scholarly journals An Experiment Relating to the Application of Lagrange's Equations of Motion to Electric Currents

1902 ◽  
Vol 15 (3) ◽  
pp. 154-162
Author(s):  
William S. Day
1885 ◽  
Vol 176 ◽  
pp. 307-342 ◽  

1. The tendency to apply dynamical principles and methods to explain physical phenomena has steadily increased ever since the discovery of the principle of the Conservation of Energy. This discovery called attention to the ready conversion of the energy of visible motion into such apparently dissimilar things as heat and electric currents, and led almost irresistibly to the conclusion that these too are forms of kinetic energy, though the moving bodies must be infinitesimally small in comparison with the bodies which form the moving pieces of any of the structures or machines with which we are acquainted. As soon as this conception of heat and electricity was reached mathematicians began to apply to them the dynamical method of the Con­servation of Energy, and many physical phenomena were shown to be related to each other, and others predicted by the use of this principle; thus, to take an example, the induction of electric currents by a moving magnet was shown by von Helmholtz to be a necessary consequence of the fact that an electric current produces a magnetic field. Of late years things have been carried still further; thus Sir William Thomson in many of his later papers, and especially in his address to the British Association at Montreal on “Steps towards a Kinetic Theory of Matter,” has devoted a good deal of attention to the description of machines capable of producing effects analogous to some physical phenomenon, such, for example, as the rotation of the plane of polarisation of light by quartz and other crystals. For these reasons the view (which we owe to the principle of the Conservation of Energy) that every physical phenomenon admits of a dynamical explanation is one that will hardly be questioned at the present time. We may look on the matter (including, if necessary, the ether) which plays a part in any physical phenomenon as forming a material system and study the dynamics of this system by means of any of the methods which we apply to the ordinary systems in the Dynamics of Rigid Bodies. As we do not know much about the structure of the systems we can only hope to obtain useful results by using methods which do not require an exact knowledge of the mechanism of the system. The method of the Conservation of Energy is such a method, but there are others which hardly require a greater knowledge of the structure of the system and yet are capable of giving us more definite information than that principle when used in the ordinary way. Lagrange's equations and Hamilton's method of Varying Action are methods of this kind, and it is the object of this paper to apply these methods to study the transformations of some of the forms of energy, and to show how useful they are for coordinating results of very different kinds as well as for suggesting new phenomena. A good many of the results which we shall get have been or can be got by the use of the ordinary principle of Thermodynamics, and it is obvious that this principle must have close relations with any method based on considerations about energy. Lagrange’s equations were used with great success by Maxwell in his ‘Treatise on Electricity and Magnetism,’ vol. ii., chaps. 6, 7, 8, to find the equations of the electromagnetic field.


Author(s):  
Itzhak Green

Mechanical seals, rotors, and wobbling bodies are characterized by a kinematical constraint that prevents them from having integral motion with respect to their own frame. A valid kinematical model is a prerequisite to subsequent dynamic analyses. Three previous works have suggested distinctly different kinematical models to the same problem. The analysis herein presents yet another kinematical model that preserves (actually enforces) the proper kinematical constraint. The outcome reaffirms one of the previous models. The equations of motion are derived using Lagrange’s equations to complement results obtained previously by Newton-Euler mechanics.


Nature ◽  
1903 ◽  
Vol 67 (1740) ◽  
pp. 415-415
Author(s):  
W. MCF. ORR

Nature ◽  
1903 ◽  
Vol 67 (1740) ◽  
pp. 415-415
Author(s):  
R. F. W.

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 257
Author(s):  
Sorin Vlase ◽  
Marin Marin ◽  
Negrean Iuliu

This paper presents the main analytical methods, in the context of current developments in the study of complex multibody systems, to obtain evolution equations for a multibody system with deformable elements. The method used for analysis is the finite element method. To write the equations of motion, the most used methods are presented, namely the Lagrange equations method, the Gibbs–Appell equations, Maggi’s formalism and Hamilton’s equations. While the method of Lagrange’s equations is well documented, other methods have only begun to show their potential in recent times, when complex technical applications have revealed some of their advantages. This paper aims to present, in parallel, all these methods, which are more often used together with some of their engineering applications. The main advantages and disadvantages are comparatively presented. For a mechanical system that has certain peculiarities, it is possible that the alternative methods offered by analytical mechanics such as Lagrange’s equations have some advantages. These advantages can lead to computer time savings for concrete engineering applications. All these methods are alternative ways to obtain the equations of motion and response time of the studied systems. The difference between them consists only in the way of describing the systems and the application of the fundamental theorems of mechanics. However, this difference can be used to save time in modeling and analyzing systems, which is important in designing current engineering complex systems. The specifics of the analyzed mechanical system can guide us to use one of the methods presented in order to benefit from the advantages offered.


Sign in / Sign up

Export Citation Format

Share Document