scholarly journals Experimentally Bounding Deviations From Quantum Theory in the Landscape of Generalized Probabilistic Theories

PRX Quantum ◽  
2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Michael D. Mazurek ◽  
Matthew F. Pusey ◽  
Kevin J. Resch ◽  
Robert W. Spekkens
Author(s):  
Markus Müller

These lecture notes provide a basic introduction to the framework of generalized probabilistic theories (GPTs) and a sketch of a reconstruction of quantum theory (QT) from simple operational principles. To build some intuition for how physics could be even more general than quantum, I present two conceivable phenomena beyond QT: superstrong nonlocality and higher-order interference. Then I introduce the framework of GPTs, generalizing both quantum and classical probability theory. Finally, I summarize a reconstruction of QT from the principles of Tomographic Locality, Continuous Reversibility, and the Subspace Axiom. In particular, I show why a quantum bit is described by a Bloch ball, why it is three-dimensional, and how one obtains the complex numbers and operators of the usual representation of QT.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 515
Author(s):  
Paolo Perinotti

We study the relation of causal influence between input systems of a reversible evolution and its output systems, in the context of operational probabilistic theories. We analyse two different definitions that are borrowed from the literature on quantum theory—where they are equivalent. One is the notion based on signalling, and the other one is the notion used to define the neighbourhood of a cell in a quantum cellular automaton. The latter definition, that we adopt in the general scenario, turns out to be strictly weaker than the former: it is possible for a system to have causal influence on another one without signalling to it. Remarkably, the counterexample comes from classical theory, where the proposed notion of causal influence determines a redefinition of the neighbourhood of a cell in cellular automata. We stress that, according to our definition, it is impossible anyway to have causal influence in the absence of an interaction, e.g. in a Bell-like scenario. We study various conditions for causal influence, and introduce the feature that we call no interaction without disturbance, under which we prove that signalling and causal influence coincide. The proposed definition has interesting consequences on the analysis of causal networks, and leads to a revision of the notion of neighbourhood for classical cellular automata, clarifying a puzzle regarding their quantisation that apparently makes the neighbourhood larger than the original one.


2015 ◽  
Vol 379 (42) ◽  
pp. 2694-2697 ◽  
Author(s):  
Zhaoqi Wu ◽  
Chuanxi Zhu ◽  
Shunlong Luo ◽  
Jianhui Wang

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 588
Author(s):  
Victoria J Wright ◽  
Stefan Weigert

Gleason-type theorems for quantum theory allow one to recover the quantum state space by assuming that (i) states consistently assign probabilities to measurement outcomes and that (ii) there is a unique state for every such assignment. We identify the class of general probabilistic theories which also admit Gleason-type theorems. It contains theories satisfying the no-restriction hypothesis as well as others which can simulate such an unrestricted theory arbitrarily well when allowing for post-selection on measurement outcomes. Our result also implies that the standard no-restriction hypothesis applied to effects is not equivalent to the dual no-restriction hypothesis applied to states which is found to be less restrictive.


2021 ◽  
Author(s):  
Raed Shaiia

Abstract In this paper we will present a modified formulation of generalized probabilistic theories that will always give rise to the structure of Hilbert space of quantum mechanics, in any finite outcome space, and give the guidelines to how to extend this work to infinite dimensional Hilbert spaces. Moreover, this new formulation which we will call extended operational-probabilistic theories, applies not only to quantum systems, but also equally well to classical systems, without violating Bell’s theorem, and at the same time solves the measurement problem. This is why we will see that the question of why our universe is quantum mechanical rather than classical is misplaced. The only difference that exists between a classical universe and a quantum mechanical one lies merely in which observables are compatible and which are not. Besides, this extended probability theory which we present in this paper shows that it is non-determinacy, or to be more precise, the non-deterministic description of the universe, that makes the laws of physics the way they are. In addition, this paper shows us that what used to be considered as purely classical systems and to be treated that way are in fact able to be manipulated according to the rules of quantum mechanics –with this new understanding of these rules- and that there is still a possibility that there might be a deterministic level from which our universe emerges, which if understood correctly, may open the door wide to applications in areas such as quantum computing. In addition to all that, this paper shows that without the use of complex vector spaces, we cannot have any kind of continuous evolution of the states of any system.


Sign in / Sign up

Export Citation Format

Share Document