classical probability
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 54)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Vol 2022 (01) ◽  
pp. 008
Author(s):  
Karthik Rajeev ◽  
Vikramaditya Mondal ◽  
Sumanta Chakraborty

Abstract We consider the introduction of anisotropy in a class of bouncing models of cosmology. The presence of anisotropy often spells doom on bouncing models, since the energy density due to the anisotropic stress outweighs that of other matter components, as the universe contracts. Different suggestions have been made in the literature to resolve this pathology, classically. Here, we introduce a family of bouncing models, in which the shear density can be tuned to either allow or forbid classical bouncing scenarios. Following which, we show that quantum cosmological considerations can drastically change the above scenario. Most importantly, we find that quantum effects can enable a bounce, even when the anisotropic stress is large enough to forbid the same classically. We employ the solutions of the appropriate mini-superspace Wheeler-deWitt equation for homogeneous, but anisotropic cosmologies, with the boundary condition that the universe is initially contracting. Intriguingly, the solution to the Wheeler-deWitt equation exhibit an interesting phase transition-like behaviour, wherein, the probability to have a bouncing universe is precisely unity before the shear density reaches a critical value and then starts to decrease abruptly as the shear density increases further. We verified our findings using the tools of the Lorentzian quantum cosmology, along with the application of the Picard-Lefschetz theory. In particular, the semi-classical probability for bounce has been re-derived from the imaginary component of the on-shell effective action, evaluated at the complex saddle points. Implications and future directions have also been discussed.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Alex Kehagias ◽  
Hervé Partouche ◽  
Nicolaos Toumbas

Abstract We determine the inner product on the Hilbert space of wavefunctions of the universe by imposing the Hermiticity of the quantum Hamiltonian in the context of the minisuperspace model. The corresponding quantum probability density reproduces successfully the classical probability distribution in the ħ → 0 limit, for closed universes filled with a perfect fluid of index w. When −1/3 < w ≤ 1, the wavefunction is normalizable and the quantum probability density becomes vanishingly small at the big bang/big crunch singularities, at least at the semiclassical level. Quantum expectation values of physical geometrical quantities, which diverge classically at the singularities, are shown to be finite.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2784
Author(s):  
Oliver Waddup ◽  
Pawel Blasiak ◽  
James M. Yearsley ◽  
Bartosz W. Wojciechowski ◽  
Emmanuel M. Pothos

Considering two agents responding to two (binary) questions each, we define sensitivity to context as a state of affairs such that responses to a question depend on the other agent’s questions, with the implication that it is not possible to represent the corresponding probabilities with a four-way probability distribution. We report two experiments with a variant of a prisoner’s dilemma task (but without a Nash equilibrium), which examine the sensitivity of participants to context. The empirical results indicate sensitivity to context and add to the body of evidence that prisoner’s dilemma tasks can be constructed so that behavior appears inconsistent with baseline classical probability theory (and the assumption that decisions are described by random variables revealing pre-existing values). We fitted two closely matched models to the results, a classical one and a quantum one, and observed superior fits for the latter. Thus, in this case, sensitivity to context goes hand in hand with (epiphenomenal) entanglement, the key characteristic of the quantum model.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Massimiliano Maria Riva ◽  
Filippo Vernizzi

Abstract We compute the four-momentum radiated during the scattering of two spinless bodies, at leading order in the Newton’s contant G and at all orders in the velocities, using the Effective Field Theory worldline approach. Following [1], we derive the conserved stress-energy tensor linearly coupled to gravity generated by localized sources, at leading and next-to-leading order in G, and from that the classical probability amplitude of graviton emission. The total emitted momentum is obtained by phase-space integration of the graviton momentum weighted by the modulo squared of the radiation amplitude. We recast this as a two-loop integral that we solve using techniques borrowed from particle physics, such as reverse unitarity, reduction to master integrals by integration-by-parts identities and canonical differential equations. The emitted momentum agrees with recent results obtained by other methods. Our approach provides an alternative way of directly computing radiated observables in the post-Minkowskian expansion without going through the classical limit of scattering amplitudes.


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classical probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions has the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classical probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. This hidden generic variable appears to be such an archetype.


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classical probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions has the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classical probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. This hidden generic variable appears to be such an archetype.


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years Man’ko and co-authors have successfully reconciled quantum and classical probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely that mathematically the interference term in the squared amplitude of superposed wavefunctions has the form of a variance of a sum of correlated random variables and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classical probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. This hidden generic variable appears to be such an archetype.


2021 ◽  
pp. 1-27
Author(s):  
Kurusch Ebrahimi-Fard ◽  
Frédéric Patras ◽  
Nikolas Tapia ◽  
Lorenzo Zambotti

Abstract Wick polynomials and Wick products are studied in the context of noncommutative probability theory. It is shown that free, Boolean, and conditionally free Wick polynomials can be defined and related through the action of the group of characters over a particular Hopf algebra. These results generalize our previous developments of a Hopf-algebraic approach to cumulants and Wick products in classical probability theory.


Author(s):  
Andrei Khrennikov

We start with the discussion on misapplication of classical probability theory by Feynman in his analysis of the two slit experiment (by following the critical argumentation of Koopman, Ballentine, and the author of this paper). The seed of Feynman's conclusion on the impossibility to apply the classical probabilistic description for the two slit experiment is treatment of conditional probabilities corresponding to different experimental contexts as unconditional ones. Then we move to the Bell type inequalities. Bell applied classical probability theory in the same manner as Feynman and, as can be expected, he also obtained the impossibility statement. In contrast to Feynman, he formulated his no-go statement not in the probabilistic terms, but by appealing to nonlocality. This note can be considered as a part of the author's attempts for getting rid off nonlocality from quantum physics.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 745
Author(s):  
Lucio Tonello ◽  
Paolo Grigolini

The bounded rationality mainstream is based on interesting experiments showing human behaviors violating classical probability (CP) laws. Quantum probability (QP) has been shown to successfully figure out such issues, supporting the hypothesis that quantum mechanics is the central fundamental pillar for brain function and cognition emergence. We discuss the decision-making model (DMM), a paradigmatic instance of criticality, which deals with bounded rationality issues in a similar way as QP, generating choices that cannot be accounted by CP. We define this approach as criticality-induced bounded rationality (CIBR). For some aspects, CIBR is even more satisfactory than QP. Our work may contribute to considering criticality as another possible fundamental pillar in order to improve the understanding of cognition and of quantum mechanics as well.


Sign in / Sign up

Export Citation Format

Share Document