scholarly journals An Auxin Transport Inhibitor Targets Villin-Mediated Actin Dynamics to Regulate Polar Auxin Transport

2019 ◽  
Vol 181 (1) ◽  
pp. 161-178 ◽  
Author(s):  
Minxia Zou ◽  
Haiyun Ren ◽  
Jiejie Li
1998 ◽  
Vol 76 (7) ◽  
pp. 1227-1231 ◽  
Author(s):  
David P Horvath

Localization of the source of the signal(s) controlling correlative inhibition of leafy spurge root buds (underground adventitious shoot buds located on the lateral roots) was studied by sequential removal of various plant organs. It was determined that full correlative inhibition of root buds was lost only after excision of all aerial tissue from the plant, or after excision of all aerial tissue except the stem. If mature leaves or growing axillary buds (or both) were left intact, no growth of root buds was observed. The synthetic auxin, alpha-NAA, prevented release of apical dominance and subsequent outgrowth of stem and crown buds when applied to the cut end of the stem or crown. Exogenous application of NAA to either the stem or the crown had little effect on root bud growth. Application of the auxin transport inhibitor NPA around the base of the crown had no effect on root bud quiescence. These data are not consistent with the previous studies (Weed Sci. 35: 155-159 (1987)) that indicate a role for auxin in maintenance of correlative inhibition of root bud growth in leafy spurge. The results of auxin transport inhibitor studies presented here suggest that correlative inhibition of root bud growth does not rely on the classic polar auxin transport system.Nomenclature: leafy spurge, Euphorbia esula L. #3 EPHES; NAA, naphthalene acetic acid; NPA, N-1-naphthylphthalamic acid; TIBA, 2,3,5-triiodobenzoic acid.Key words: root buds, apical dominance, auxin, NPA.


Tetrahedron ◽  
2013 ◽  
Vol 69 (34) ◽  
pp. 7001-7005 ◽  
Author(s):  
Tsukasa Arai ◽  
Yuta Toda ◽  
Kiyotaka Kato ◽  
Kensuke Miyamoto ◽  
Tsuyoshi Hasegawa ◽  
...  

Plant Science ◽  
2014 ◽  
Vol 225 ◽  
pp. 45-51 ◽  
Author(s):  
Makoto Amijima ◽  
Yuji Iwata ◽  
Nozomu Koizumi ◽  
Kei-ichiro Mishiba

2006 ◽  
Vol 33 (10) ◽  
pp. 981 ◽  
Author(s):  
Saichol Ketsa ◽  
Apinya Wisutiamonkul ◽  
Wouter G. van Doorn

In Dendrobium and other orchids the ovule becomes mature long after pollination, whereas the ovary starts growing within two days of pollination. The signalling pathway that induces rapid ovary growth after pollination has remained elusive. We placed the auxin antagonist �-(p-chlorophenoxy) isobutyric acid (PCIB) or the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) on the stigma, before pollination. Both treatments nullified pollination-induced ovary growth. The ovaries also did not grow after similar stigma treatment with 1-methylcyclopropene (1-MCP), AgNO3 (both inhibitors of ethylene action), aminooxyacetic acid (AOA) or CoCl2 (which both inhibit ethylene synthesis), before pollination. Pollination could be replaced by placement of the auxin naphthylacetic acid (NAA) on the stigma. All mentioned inhibitors nullified the effect of NAA, indicating that if auxin is the initiator of ovary growth, it acts through ethylene. The results suggest that the pollination effect on ovary growth requires auxin (at least auxin transport and maybe also auxin signalling), and both ethylene synthesis and ethylene action.


Nematology ◽  
2014 ◽  
Vol 16 (7) ◽  
pp. 837-845 ◽  
Author(s):  
Hui Feng ◽  
Ying Shao ◽  
Li-hui Wei ◽  
Cun-yi Gao ◽  
Yi-jun Zhou

Aphelenchoides besseyi is an obligate parasite that often causes white-tip symptoms in rice plants. The nematode exhibits ectoparasitic behaviour with its infection rate matching the development of rice plants. Few studies have analysed how A. besseyi migration is influenced by chemical and host factors. Here, we focused on the effects of auxins on nematode migration and propagation. Exposure of A. besseyi to an auxin gradient created by a Pluronic F-127 gel resulted in nematode aggregation at the highest auxin concentration tested, 100 μm. Inoculation on the susceptible cv. Ningjing1 produced more nematodes than on the resistant rice cv. Tetep, which correlated with their endogenous auxin levels. Young panicles treated with 1-naphthaleneacetic acid produced more grains and nematodes, whereas plants treated with the auxin transport inhibitor, 2,3,5-triiodobenzoic acid, led to fewer nematodes in the seeds. In addition, A. besseyi rarely migrated and multiplied in the plants of the male sterile rice cv. Zhenshan97A, which had insufficient auxin level in pollen and thus could not generate any grains in most panicles. However, large numbers of nematodes were observed in seeds of cv. Zhenshan97A that had received pollens from the maintainer cv. Zhenshan97B. The results indicate that auxin might play a key role in the migration and propagation of A. besseyi.


Sign in / Sign up

Export Citation Format

Share Document