scholarly journals The role of specific plant organs and polar auxin transport in correlative inhibition of leafy spurge (Euphorbia esula) root buds

1998 ◽  
Vol 76 (7) ◽  
pp. 1227-1231 ◽  
Author(s):  
David P Horvath

Localization of the source of the signal(s) controlling correlative inhibition of leafy spurge root buds (underground adventitious shoot buds located on the lateral roots) was studied by sequential removal of various plant organs. It was determined that full correlative inhibition of root buds was lost only after excision of all aerial tissue from the plant, or after excision of all aerial tissue except the stem. If mature leaves or growing axillary buds (or both) were left intact, no growth of root buds was observed. The synthetic auxin, alpha-NAA, prevented release of apical dominance and subsequent outgrowth of stem and crown buds when applied to the cut end of the stem or crown. Exogenous application of NAA to either the stem or the crown had little effect on root bud growth. Application of the auxin transport inhibitor NPA around the base of the crown had no effect on root bud quiescence. These data are not consistent with the previous studies (Weed Sci. 35: 155-159 (1987)) that indicate a role for auxin in maintenance of correlative inhibition of root bud growth in leafy spurge. The results of auxin transport inhibitor studies presented here suggest that correlative inhibition of root bud growth does not rely on the classic polar auxin transport system.Nomenclature: leafy spurge, Euphorbia esula L. #3 EPHES; NAA, naphthalene acetic acid; NPA, N-1-naphthylphthalamic acid; TIBA, 2,3,5-triiodobenzoic acid.Key words: root buds, apical dominance, auxin, NPA.

Weed Science ◽  
1987 ◽  
Vol 35 (2) ◽  
pp. 155-159 ◽  
Author(s):  
Scott J. Nissen ◽  
Michael E. Foley

Root buds of leafy spurge (Euphorbia esulaL. # EPHES) were found to be quiescent during most of the growing season due to correlative inhibition rather than innate dormancy. Excised root buds taken from plants that were fully flowering showed reduced elongation, indicating a period of innate dormancy. This innate dormancy could be eliminated by chilling plants for 8 days at 4 C. Root buds from plants showing late summer regrowth were no longer innately dormant. IAA (indole-3-acetic acid) and NAA (1-napthaleneacetic acid) completely inhibited the growth of excised leafy spurge root buds at concentrations of 10−3and 10−5M, respectively. A significant increase in root bud elongation was produced by 1 mM TIBA (2,3,5-triiodobenzoic acid) applied to stem and root tissue. These data provide further evidence for the involvement of IAA in correlative control of root bud growth in leafy spurge.


Weed Science ◽  
1999 ◽  
Vol 47 (5) ◽  
pp. 544-550 ◽  
Author(s):  
David P. Horvath

Earlier studies on the source of signals controlling correlative inhibition of root buds (underground adventitious buds located on the lateral roots) inEuphorbia esulaindicated that either growing meristems (apical or axillary buds) or fully expanded leaves could prevent root buds from breaking quiescence. An investigation of the production and transport requirements of the leaf-derived signal is described. As few as three leaves remaining on budless stems greatly reduced the growth of (but not the number of growing) root buds. Also, light and CO2fixation were necessary for the leaf effects on root bud growth, but not necessary for correlative inhibition imposed by growing axillary buds. Treatment of plants with Ametryn induced root bud growth on budless plants but not on plants with intact axillary buds. The polar auxin transport inhibitor N-1-naphthylphthalamic acid prevented transmission or the signal from growing axillary buds, but it had only a minor effect on the transmission of the leaf-derived signal. Treatment of plants with gibberellic acid (GA) induced growth of root buds under otherwise noninducing conditions to some extent in all plants. However, the greatest effects of GA were on plants with intact leaves (meristemless/budless and meristemless). GA had no significant effect on root bud quiescence under conditions that induced root bud growth.


Weed Science ◽  
1974 ◽  
Vol 22 (2) ◽  
pp. 167-171 ◽  
Author(s):  
James H. Hunter ◽  
G. I. McIntyre

The translocation of foliar-applied14C-labelled 2,4-D [(2,4-dichlorophenoxy)acetic acid] in seedlings of leafy spurge (Euphorbia esulaL.) was investigated. Approximately 90% of the tracer was extracted from the tissues with 80% ethanol. Seven days after treatment 48% of the14C in the shoot extract and 75% of that extracted from the root were identified chromatographically as 2,4-D. Translocation out of the treated leaves and into the shoot, root, and root buds was significantly increased both by decapitation of the shoot and by increasing the nitrogen supply. This effect is attributed to the marked promotion of bud growth produced by both of these treatments.


Tetrahedron ◽  
2013 ◽  
Vol 69 (34) ◽  
pp. 7001-7005 ◽  
Author(s):  
Tsukasa Arai ◽  
Yuta Toda ◽  
Kiyotaka Kato ◽  
Kensuke Miyamoto ◽  
Tsuyoshi Hasegawa ◽  
...  

Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Wun S. Chao ◽  
Marcelo D. Serpe ◽  
James V. Anderson ◽  
Russ W. Gesch ◽  
David P. Horvath

Signals from both leaves and apical or axillary meristems of leafy spurge are known to inhibit root bud growth. To test the hypothesis that carbohydrates and growth regulators affect root bud growth, decapitated leafy spurge plants were hydroponically treated with glucose, sucrose, gibberellic acid (GA), abscisic acid (ABA), 1-naphthaleneacetic acid (NAA), 6-benzylaminopurine (BA), and a GA biosynthesis inhibitor, paclobutrazol. Both glucose and sucrose caused suppression of root bud growth at concentrations of 30 mM. The inhibitory effect of sucrose was counteracted by GA at 15 μM. In contrast, BA, ABA, NAA, and paclobutrazol inhibited root bud growth at concentrations as low as 1, 2, 1, and 16 μM, respectively. Sugar and starch levels were also determined in root buds at various times after decapitation. Buds of intact plants contained the highest level of sucrose compared with buds harvested 1, 3, and 5 d after decapitation. To determine how seasonal changes affect root bud dormancy, growth from root buds of field-grown plants was monitored for several years. Root buds of field-grown leafy spurge had the highest level of innate dormancy from October to November, which persisted until a prolonged period of freezing occurred in November or early December. Our data support the hypothesis that carbohydrates may be involved in regulating dormancy status in root buds of leafy spurge.


Plant Science ◽  
2014 ◽  
Vol 225 ◽  
pp. 45-51 ◽  
Author(s):  
Makoto Amijima ◽  
Yuji Iwata ◽  
Nozomu Koizumi ◽  
Kei-ichiro Mishiba

Sign in / Sign up

Export Citation Format

Share Document