transport inhibitor
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 25)

H-INDEX

44
(FIVE YEARS 5)

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2709
Author(s):  
Natsumi Ohishi ◽  
Nanami Hoshika ◽  
Mizuho Takeda ◽  
Kyomi Shibata ◽  
Hisakazu Yamane ◽  
...  

The spores of Lygodium japonicum, cultured in the dark, form a filamentous structure called protonema. Earlier studies have shown that gibberellin (GA) induces protonema elongation, along with antheridium formation, on the protonema. In this study, we have performed detailed morphological analyses to investigate the roles of multiple phytohormones in antheridium formation, protonema elongation, and prothallus formation in L. japonicum. GA4 methyl ester is a potent GA that stimulates both protonema elongation and antheridium formation. We found that these effects were inhibited by simultaneous application of abscisic acid (ABA). On the other hand, IAA (indole-3-acetic acid) promoted protonema elongation but reduced antheridium formation, while these effects were partially recovered by transferring to an IAA-free medium. An auxin biosynthesis inhibitor, PPBo (4-phenoxyphenylboronic acid), and a transport inhibitor, TIBA (2,3,5-triiodobenzoic acid), both inhibited protonema elongation and antheridium formation. L. japonicum prothalli are induced from germinating spores under continuous white light. Such development was negatively affected by PPBo, which induced smaller-sized prothalli, and TIBA, which induced aberrantly shaped prothalli. The evidence suggests that the crosstalk between these plant hormones might regulate protonema elongation and antheridium formation in L. japonicum. Furthermore, the possible involvement of auxin in the prothalli development of L. japonicum is suggested.


2021 ◽  
Vol 22 (23) ◽  
pp. 12910
Author(s):  
Xiaowei Zhang ◽  
Yanyan Zhang ◽  
Chenxiao Xu ◽  
Kun Liu ◽  
Huangai Bi ◽  
...  

Hydrogen sulfide (H2S) plays a crucial role in regulating chilling tolerance. However, the role of hydrogen peroxide (H2O2) and auxin in H2S-induced signal transduction in the chilling stress response of plants was unclear. In this study, 1.0 mM exogenous H2O2 and 75 μM indole-3-acetic acid (IAA) significantly improved the chilling tolerance of cucumber seedlings, as demonstrated by the mild plant chilling injury symptoms, lower chilling injury index (CI), electrolyte leakage (EL), and malondialdehyde content (MDA) as well as higher levels of photosynthesis and cold-responsive genes under chilling stress. IAA-induced chilling tolerance was weakened by N, N′-dimethylthiourea (DMTU, a scavenger of H2O2), but the polar transport inhibitor of IAA (1-naphthylphthalamic acid, NPA) did not affect H2O2-induced mitigation of chilling stress. IAA significantly enhanced endogenous H2O2 synthesis, but H2O2 had minimal effects on endogenous IAA content in cucumber seedlings. In addition, the H2O2 scavenger DMTU, inhibitor of H2O2 synthesis (diphenyleneiodonium chloride, DPI), and IAA polar transport inhibitor NPA reduced H2S-induced chilling tolerance. Sodium hydrosulfide (NaHS) increased H2O2 and IAA levels, flavin monooxygenase (FMO) activity, and respiratory burst oxidase homolog (RBOH1) and FMO-like protein (YUCCA2) mRNA levels in cucumber seedlings. DMTU, DPI, and NPA diminished NaHS-induced H2O2 production, but DMTU and DPI did not affect IAA levels induced by NaHS during chilling stress. Taken together, the present data indicate that H2O2 as a downstream signal of IAA mediates H2S-induced chilling tolerance in cucumber seedlings.


Author(s):  
Lindsey N Kent ◽  
You E Li ◽  
Monali Wakle-Prabagaran ◽  
Mashal Z Naqvi ◽  
Sophia G Weil ◽  
...  

Abstract Nuclear factor kappa B (NF-κB) transcriptionally regulates several genes involved in initiating uterine contractions. A key factor controlling NF-κB activity is its translocation to the nucleus. In myometrial smooth muscle cells (MSMCs), this translocation can be stimulated by the inflammatory molecule lipopolysaccharide (LPS) or by blocking the potassium calcium-activated channel subfamily M alpha 1 (KCNMA1 or BKCa) with paxilline (PAX). Here, we sought to determine the mechanism by which blocking BKCa causes NF-κB-p65 translocation to the nucleus in MSMCs. We show that LPS- and PAX-induced NF-κB-p65 translocation are similar in that neither depend on several mitogen-activated protein kinase pathways, but both require increased intracellular calcium (Ca2+). However, the nuclear transport inhibitor wheat germ agglutinin prevented NF-κB-p65 nuclear translocation in response to LPS but not in response to PAX. Blocking BKCa located on the plasma membrane resulted in a transient NF-κB-p65 nuclear translocation that was not sufficient to induce expression of its transcriptional target, suggesting a role for intracellular BKCa. We report that BKCa also localizes to the nucleus and that blocking nuclear BKCa results in an increase in nuclear Ca2+ in MSMCs. Together, these data suggest that BKCa localized on the nuclear membrane plays a key role in regulating nuclear Ca2+ and NF-κB-p65 nuclear translocation in MSMCs.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1187
Author(s):  
Christian J. Malpica-Nieves ◽  
Yomarie Rivera ◽  
David E. Rivera-Aponte ◽  
Otto Phanstiel ◽  
Rüdiger W. Veh ◽  
...  

Polyamines (PAs) are polycationic biomolecules containing multiple amino groups. Patients with HIV-associated neurocognitive disorder (HAND) have high concentrations of the polyamine N-acetylated spermine in their brain and cerebral spinal fluid (CSF) and have increased PA release from astrocytes. These effects are due to the exposure to HIV-Tat. In healthy adult brain, PAs are accumulated but not synthesized in astrocytes, suggesting that PAs must enter astrocytes to be N-acetylated and released. Therefore, we tested if Cx43 hemichannels (Cx43-HCs) are pathways for PA flux in control and HIV-Tat-treated astrocytes. We used biotinylated spermine (b-SPM) to examine polyamine uptake. We found that control astrocytes and those treated with siRNA-Cx43 took up b-SPM, similarly suggesting that PA uptake is via a transporter/channel other than Cx43-HCs. Surprisingly, astrocytes pretreated with both HIV-Tat and siRNA-Cx43 showed increased accumulation of b-SPM. Using a novel polyamine transport inhibitor (PTI), trimer 44NMe, we blocked b-SPM uptake, showing that PA uptake is via a PTI-sensitive transport mechanism such as organic cation transporter. Our data suggest that Cx43 HCs are not a major pathway for b-SPM uptake in the condition of normal extracellular calcium concentration but may be involved in the release of PAs to the extracellular space during viral infection.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 563
Author(s):  
Nazanin Zamani-Noor ◽  
Johann Hornbacher ◽  
Christel Comel ◽  
Jutta Papenbrock

The present study investigated the changes in total and individual glucosinolates (GSLs) in roots and leaves of different clubroot-resistant and -susceptible oilseed rape cultivars following artificial inoculation with Plasmodiophora brassicae isolates with different virulence. The results showed significant differences in clubroot incidence and severity as well as in the amount of total and individual glucosinolates between oilseed rape cultivars in response to virulence of the pathogen. Single among with total aliphatic and total indolic glucosinolate contents were significantly lower in leaves of susceptible cultivars compared to resistant ones due to the infection. Similarly, single and total aliphatic as well as indolic glucosinolate contents in roots were lower in susceptible cultivars compared to resistant cultivars analyzed. The different isolates of P. brassicae seem to differ in their ability to reduce gluconasturtiin contents in the host. The more aggressive isolate P1 (+) might be able to suppress gluconasturtiin synthesis of the host in a more pronounced manner compared to the isolate P1. A possible interaction of breakdown products of glucobrassicin with the auxin receptor transport inhibitor response 1 (TIR1) is hypothesized and its possible effects on auxin signaling in roots and leaves of resistant and susceptible cultivars is discussed. A potential interplay between aliphatic and indolic glucosinolates that might be involved in water homeostasis in resistant cultivars is explained.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 853
Author(s):  
Qi Liu ◽  
Hanqing Zhang ◽  
Yanhao Mei ◽  
Qi Li ◽  
Yahui Bai ◽  
...  

Long, robust hypocotyls are important for facilitating greenhouse transplant production. The use of far-red light at the end of the day (end-of-day far-red, EOD-FR) is known to prompt hypocotyl elongation, but the mechanism of EOD-FR-mediated hypocotyl elongation in pumpkin remains unclear. Here, we found that hypocotyl length, parenchymal cell size in hypocotyls, and plant IAA levels were significantly greater in pumpkin after EOD-FR treatment. This effect was counteracted by the application of the polar auxin transport inhibitor 1-N-naphthylphthalamic acid. Integrated transcriptomic and metabolomic analysis of pumpkin hypocotyls revealed that the expression of auxin-related genes changed significantly after EOD-FR treatment, and the contents of the auxin biosynthetic precursors tryptophan and indole were also significantly higher. Our results show that auxin plays an essential role in EOD-FR-mediated hypocotyl elongation, shed light on the mechanisms of EOD-FR mediated hypocotyl elongation, and provide a theoretical basis for the use of EOD-FR in facility cultivation.


Sign in / Sign up

Export Citation Format

Share Document