scholarly journals An octopine synthase enhancer element directs tissue-specific expression and binds ASF-1, a factor from tobacco nuclear extracts.

1989 ◽  
Vol 1 (10) ◽  
pp. 977-984 ◽  
Author(s):  
H Fromm ◽  
F Katagiri ◽  
N H Chua
1988 ◽  
Vol 8 (3) ◽  
pp. 1197-1205 ◽  
Author(s):  
D L Gumucio ◽  
K Wiebauer ◽  
R M Caldwell ◽  
L C Samuelson ◽  
M H Meisler

Cosmid clones containing 250 kilobases of genomic DNA from the human amylase gene cluster have been isolated. These clones contain seven distinct amylase genes which appear to comprise the complete multigene family. By sequence comparison with the cDNAs, we have identified two pancreatic amylase genes and three salivary amylase genes. Two truncated pseudogenes were also recovered. Intergenic distances of 17 to 22 kilobases separate the amylase gene copies. Within the past 10 million years, duplications, gene conversions, and unequal crossover events have resulted in a very high level of sequence similarity among human amylase gene copies. To identify sequence elements involved in tissue-specific expression and hormonal regulation, the promoter regions of the human amylase genes were sequenced and compared with those of the corresponding mouse genes. The promoters of the human and mouse pancreatic amylase genes are highly homologous between nucleotide -160 and the cap site. Two sequence elements thought to influence pancreas-specific expression of the rodent genes are present in the human genes. In contrast, similarity in the 5' flanking sequences of the salivary amylase genes is limited to several short sequence elements whose positions and orientations differ in the two species. Some of these sequence elements are also associated with other parotid-specific genes and may be involved in their tissue-specific expression. A glucocorticoid response element and a general enhancer element are closely associated in several of the amylase promoters.


1988 ◽  
Vol 8 (3) ◽  
pp. 1197-1205
Author(s):  
D L Gumucio ◽  
K Wiebauer ◽  
R M Caldwell ◽  
L C Samuelson ◽  
M H Meisler

Cosmid clones containing 250 kilobases of genomic DNA from the human amylase gene cluster have been isolated. These clones contain seven distinct amylase genes which appear to comprise the complete multigene family. By sequence comparison with the cDNAs, we have identified two pancreatic amylase genes and three salivary amylase genes. Two truncated pseudogenes were also recovered. Intergenic distances of 17 to 22 kilobases separate the amylase gene copies. Within the past 10 million years, duplications, gene conversions, and unequal crossover events have resulted in a very high level of sequence similarity among human amylase gene copies. To identify sequence elements involved in tissue-specific expression and hormonal regulation, the promoter regions of the human amylase genes were sequenced and compared with those of the corresponding mouse genes. The promoters of the human and mouse pancreatic amylase genes are highly homologous between nucleotide -160 and the cap site. Two sequence elements thought to influence pancreas-specific expression of the rodent genes are present in the human genes. In contrast, similarity in the 5' flanking sequences of the salivary amylase genes is limited to several short sequence elements whose positions and orientations differ in the two species. Some of these sequence elements are also associated with other parotid-specific genes and may be involved in their tissue-specific expression. A glucocorticoid response element and a general enhancer element are closely associated in several of the amylase promoters.


1992 ◽  
Vol 12 (2) ◽  
pp. 619-630
Author(s):  
N Shimizu ◽  
E Dizon ◽  
R Zak

Expression of the myosin heavy-chain beta gene is controlled by multiple cis-acting regulatory elements in the 5' flanking region; two of these, referred to as A (-276 to -263) and B (-207 to -180), are essential for conferring muscle-specific activation on homologous and heterologous promoters. Here we report on the identification of nuclear protein factors that specifically bind to these two elements. By using the A element as a probe, as well as nuclear extracts from muscle cells, we found two protein-DNA complexes that displayed distinct bands in a gel mobility shift assay but had identical methylation interference patterns. One complex was present mainly in nuclear extracts from undifferentiated muscle and nonmuscle cells, whereas the other was observed mainly in nuclear extracts from differentiated muscle cells. Thus, the muscle-specific complex formation with the A element appears to be involved in determining tissue-specific expression. Furthermore, competition analysis demonstrated that the A-element-binding factors also bind to the muscle-CAT motif in the cardiac troponin T gene. By using the B element as a probe, we saw similar patterns of gel-shifted bands and methylation interference in nonmuscle and muscle nuclear extracts. In addition, both elements A and B were found to be necessary for tissue-specific expression, suggesting that the muscle-specific activation of the myosin heavy-chain beta gene may require interaction between a muscle-specific and a ubiquitous protein-DNA complex.


1992 ◽  
Vol 12 (2) ◽  
pp. 619-630 ◽  
Author(s):  
N Shimizu ◽  
E Dizon ◽  
R Zak

Expression of the myosin heavy-chain beta gene is controlled by multiple cis-acting regulatory elements in the 5' flanking region; two of these, referred to as A (-276 to -263) and B (-207 to -180), are essential for conferring muscle-specific activation on homologous and heterologous promoters. Here we report on the identification of nuclear protein factors that specifically bind to these two elements. By using the A element as a probe, as well as nuclear extracts from muscle cells, we found two protein-DNA complexes that displayed distinct bands in a gel mobility shift assay but had identical methylation interference patterns. One complex was present mainly in nuclear extracts from undifferentiated muscle and nonmuscle cells, whereas the other was observed mainly in nuclear extracts from differentiated muscle cells. Thus, the muscle-specific complex formation with the A element appears to be involved in determining tissue-specific expression. Furthermore, competition analysis demonstrated that the A-element-binding factors also bind to the muscle-CAT motif in the cardiac troponin T gene. By using the B element as a probe, we saw similar patterns of gel-shifted bands and methylation interference in nonmuscle and muscle nuclear extracts. In addition, both elements A and B were found to be necessary for tissue-specific expression, suggesting that the muscle-specific activation of the myosin heavy-chain beta gene may require interaction between a muscle-specific and a ubiquitous protein-DNA complex.


2013 ◽  
Author(s):  
AL Bookout ◽  
Y Jeong ◽  
M Downes ◽  
RT Yu ◽  
RM Evans ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document