scholarly journals Initial Steps of Photosystem II de Novo Assembly and Preloading with Manganese Take Place in Biogenesis Centers in Synechocystis

2012 ◽  
Vol 24 (2) ◽  
pp. 660-675 ◽  
Author(s):  
Anna Stengel ◽  
Irene L. Gügel ◽  
Daniel Hilger ◽  
Birgit Rengstl ◽  
Heinrich Jung ◽  
...  
2019 ◽  
Vol 116 (33) ◽  
pp. 16631-16640 ◽  
Author(s):  
José G. García-Cerdán ◽  
Ariel L. Furst ◽  
Kent L. McDonald ◽  
Danja Schünemann ◽  
Matthew B. Francis ◽  
...  

Photosystem II (PSII) undergoes frequent photooxidative damage that, if not repaired, impairs photosynthetic activity and growth. How photosynthetic organisms protect vulnerable PSII intermediate complexes during de novo assembly and repair remains poorly understood. Here, we report the genetic and biochemical characterization of chloroplast-located rubredoxin 1 (RBD1), a PSII assembly factor containing a redox-active rubredoxin domain and a single C-terminal transmembrane α-helix (TMH) domain. RBD1 is an integral thylakoid membrane protein that is enriched in stroma lamellae fractions with the rubredoxin domain exposed on the stromal side. RBD1 also interacts with PSII intermediate complexes containing cytochrome b559. Complementation of the Chlamydomonas reinhardtii (hereafter Chlamydomonas) RBD1-deficient 2pac mutant with constructs encoding RBD1 protein truncations and site-directed mutations demonstrated that the TMH domain is essential for de novo PSII assembly, whereas the rubredoxin domain is involved in PSII repair. The rubredoxin domain exhibits a redox midpoint potential of +114 mV and is proficient in 1-electron transfers to a surrogate cytochrome c in vitro. Reduction of oxidized RBD1 is NADPH dependent and can be mediated by ferredoxin-NADP+ reductase (FNR) in vitro. We propose that RBD1 participates, together with the cytochrome b559, in the protection of PSII intermediate complexes from photooxidative damage during de novo assembly and repair. This role of RBD1 is consistent with its evolutionary conservation among photosynthetic organisms and the fact that it is essential in photosynthetic eukaryotes.


2021 ◽  
Vol 18 (2) ◽  
pp. 170-175 ◽  
Author(s):  
Haoyu Cheng ◽  
Gregory T. Concepcion ◽  
Xiaowen Feng ◽  
Haowen Zhang ◽  
Heng Li
Keyword(s):  

Author(s):  
Guangtu Gao ◽  
Susana Magadan ◽  
Geoffrey C Waldbieser ◽  
Ramey C Youngblood ◽  
Paul A Wheeler ◽  
...  

Abstract Currently, there is still a need to improve the contiguity of the rainbow trout reference genome and to use multiple genetic backgrounds that will represent the genetic diversity of this species. The Arlee doubled haploid line was originated from a domesticated hatchery strain that was originally collected from the northern California coast. The Canu pipeline was used to generate the Arlee line genome de-novo assembly from high coverage PacBio long-reads sequence data. The assembly was further improved with Bionano optical maps and Hi-C proximity ligation sequence data to generate 32 major scaffolds corresponding to the karyotype of the Arlee line (2 N = 64). It is composed of 938 scaffolds with N50 of 39.16 Mb and a total length of 2.33 Gb, of which ∼95% was in 32 chromosome sequences with only 438 gaps between contigs and scaffolds. In rainbow trout the haploid chromosome number can vary from 29 to 32. In the Arlee karyotype the haploid chromosome number is 32 because chromosomes Omy04, 14 and 25 are divided into six acrocentric chromosomes. Additional structural variations that were identified in the Arlee genome included the major inversions on chromosomes Omy05 and Omy20 and additional 15 smaller inversions that will require further validation. This is also the first rainbow trout genome assembly that includes a scaffold with the sex-determination gene (sdY) in the chromosome Y sequence. The utility of this genome assembly is demonstrated through the improved annotation of the duplicated genome loci that harbor the IGH genes on chromosomes Omy12 and Omy13.


2018 ◽  
Vol 19 (2) ◽  
pp. 520 ◽  
Author(s):  
Le Zhao ◽  
Xinmei Zhang ◽  
Zhongying Qiu ◽  
Yuan Huang
Keyword(s):  

Data in Brief ◽  
2020 ◽  
Vol 31 ◽  
pp. 105917
Author(s):  
Marianela Cobos ◽  
Hicler N. Rodríguez ◽  
Segundo L. Estela ◽  
Carlos G. Castro ◽  
J. Dylan Maddox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document