scholarly journals A long reads-based de-novo assembly of the genome of the Arlee homozygous line reveals chromosomal rearrangements in rainbow trout

Author(s):  
Guangtu Gao ◽  
Susana Magadan ◽  
Geoffrey C Waldbieser ◽  
Ramey C Youngblood ◽  
Paul A Wheeler ◽  
...  

Abstract Currently, there is still a need to improve the contiguity of the rainbow trout reference genome and to use multiple genetic backgrounds that will represent the genetic diversity of this species. The Arlee doubled haploid line was originated from a domesticated hatchery strain that was originally collected from the northern California coast. The Canu pipeline was used to generate the Arlee line genome de-novo assembly from high coverage PacBio long-reads sequence data. The assembly was further improved with Bionano optical maps and Hi-C proximity ligation sequence data to generate 32 major scaffolds corresponding to the karyotype of the Arlee line (2 N = 64). It is composed of 938 scaffolds with N50 of 39.16 Mb and a total length of 2.33 Gb, of which ∼95% was in 32 chromosome sequences with only 438 gaps between contigs and scaffolds. In rainbow trout the haploid chromosome number can vary from 29 to 32. In the Arlee karyotype the haploid chromosome number is 32 because chromosomes Omy04, 14 and 25 are divided into six acrocentric chromosomes. Additional structural variations that were identified in the Arlee genome included the major inversions on chromosomes Omy05 and Omy20 and additional 15 smaller inversions that will require further validation. This is also the first rainbow trout genome assembly that includes a scaffold with the sex-determination gene (sdY) in the chromosome Y sequence. The utility of this genome assembly is demonstrated through the improved annotation of the duplicated genome loci that harbor the IGH genes on chromosomes Omy12 and Omy13.

2020 ◽  
Author(s):  
Guangtu Gao ◽  
Susana Magadan ◽  
Geoffrey C. Waldbieser ◽  
Ramey C. Youngblood ◽  
Paul A. Wheeler ◽  
...  

AbstractCurrently, there is still a need to improve the contiguity of the rainbow trout reference genome and to use multiple genetic backgrounds that will represent the genetic diversity of this species. The Arlee doubled haploid line was originated from a domesticated hatchery strain that was originally collected from the northern California coast. The Canu pipeline was used to generate the Arlee line genome de-novo assembly from high coverage PacBio long-reads sequence data. The assembly was further improved with Bionano optical maps and Hi-C proximity ligation sequence data to generate 32 major scaffolds corresponding to the karyotype of the Arlee line (2N=64). It is composed of 938 scaffolds with N50 of 39.16 Mb and a total length of 2.33 Gb, of which ∼95% was in 32 chromosome sequences with only 438 gaps between contigs and scaffolds. In rainbow trout the haploid chromosome number can vary from 29 to 32. In the Arlee karyotype the haploid chromosome number is 32 because chromosomes Omy04, 14 and 25 are divided into six acrocentric chromosomes. Additional structural variations that were identified in the Arlee genome included the major inversions on chromosomes Omy05 and Omy20 and additional 15 smaller inversions that will require further validation. This is also the first rainbow trout genome assembly that includes a scaffold with the sex-determination gene (sdY) in the chromosome Y sequence. The utility of this genome assembly is demonstrated through the improved annotation of the duplicated genome loci that harbor the IGH genes on chromosomes Omy12 and Omy13.Article SummaryA de-novo genome assembly was generated for the Arlee homozygous line of rainbow trout to enable identification and characterization of genome variants towards developing a rainbow trout pan-genome reference. The new assembly was generated using the PacBio sequencing technology and scaffolding with Hi-C contact maps and Bionano optical mapping. A contiguous genome assembly was obtained, with the contig and scaffold N50 over 15.6 Mb and 39 Mb, respectively, and 95% of the assembly in chromosome sequences. The utility of this genome assembly is demonstrated through the improved annotation of the duplicated genome loci that harbor the IGH genes.


Author(s):  
Natascha van Lieshout ◽  
Martijn van Kaauwen ◽  
Linda Kodde ◽  
Paul Arens ◽  
Marinus J M Smulders ◽  
...  

Abstract Chrysanthemum is among the top ten cut, potted and perennial garden flowers in the world. Despite this, to date, only the genomes of two wild diploid chrysanthemums have been sequenced and assembled. Here we present the most complete and contiguous chrysanthemum de novo assembly published so far, as well as a corresponding ab initio annotation. The cultivated hexaploid varieties are thought to originate from a hybrid of wild chrysanthemums, among which the diploid Chrysanthemum makinoi has been mentioned. Using a combination of Oxford Nanopore long reads, Pacific Biosciences long reads, Illumina short reads, Dovetail sequences and a genetic map, we assembled 3.1 Gb of its sequence into 9 pseudochromosomes, with an N50 of 330 Mb and BUSCO complete score of 92.1%. Our ab initio annotation pipeline predicted 95 074 genes and marked 80.0% of the genome as repetitive. This genome assembly of C. makinoi provides an important step forward in understanding the chrysanthemum genome, evolution and history.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 241-242
Author(s):  
Karim Karimi ◽  
Duy Ngoc Do ◽  
Younes Miar

Abstract Development of genome-enabled selection and providing new insights in the genetic architecture of economically important traits are essential parts of mink breeding programs. Availability of a contagious genome assembly would guarantee the fundamental genomic studies in American mink (Neovison vison). Advances in long-read sequencing technologies have provided the opportunity to obtain high quality and free-gaps assemblies for different species. The objective of this study was to generate an accurate genome assembly using Single Molecule High-Fidelity (HiFi) Sequencing for American mink. The whole genome sequences of 100 mink were analyzed to select the most homozygous individual. A black American mink from Millbank Fur Farm (Rockwood, ON, Canada) was selected for PacBio sequencing. The total number of 2,884,047 HiFi reads with the average size of 20 kb were generated using three libraries of PacBio Sequel II System. Three de novo assemblers including wtdbg, Flye and IPA were used to obtain the initial draft of assembly using the long reads. The draft generated using Flye was selected as the final assembly based on the metrics of contiguity and completeness. The final assembly included 3,529 contigs with the N50 of 18.26 Mb and the largest contig of 62.16 Mb. The length of genome assembly was 2.66 Gb with 85 gaps. These results confirmed that high-coverage and accurate long-reads significantly improved the American mink genome assembly and successfully generated more contagious assembly. The chromosome conformation capture data will be integrated to the current draft to obtain a chromosome-level genome assembly for American mink at the next step of the project.


2017 ◽  
Author(s):  
JR Tyson ◽  
NJ O’Neil ◽  
M Jain ◽  
HE Olsen ◽  
P Hieter ◽  
...  

ABSTRACTAdvances in 3rd generation sequencing have opened new possibilities for ‘benchtop’ whole genome sequencing. The MinION is a portable device that uses nanopore technology and can sequence long DNA molecules. MinION long reads are well suited for sequencing and de novo assembly of complex genomes with large repetitive elements. Long reads also facilitate the identification of complex genomic rearrangements such as those observed in tumor genomes. To assess the feasibility of the de novo assembly of large complex genomes using both MinION and Illumina platforms, we sequenced the genome of a Caenorhabditis elegans strain that contains a complex acetaldehyde-induced rearrangement and a biolistic bombardment-mediated insertion of a GFP containing plasmid. Using ∼5.8 gigabases of MinION sequence data, we were able to assemble a C. elegans genome containing 145 contigs (N50 contig length = 1.22 Mb) that covered >99% of the 100,286,401 bp reference genome. In contrast, using ∼8.04 gigabases of Illumina sequence data, we were able to assemble a C. elegans genome in 38,645 contigs (N50 contig length = ∼26 kb) containing 117 Mb. From the MinION genome assembly we identified the complex structures of both the acetaldehyde-induced mutation and the biolistic-mediated insertion. To date, this is the largest genome to be assembled exclusively from MinION data and is the first demonstration that the long reads of MinION sequencing can be used for whole genome assembly of large (100 Mb) genomes and the elucidation of complex genomic rearrangements.


2021 ◽  
Author(s):  
Xiao Luo ◽  
Xiongbin Kang ◽  
Alexander Schoenhuth

Haplotype-aware diploid genome assembly is crucial in genomics, precision medicine, and many other disciplines. Long-read sequencing technologies have greatly improved genome assembly thanks to advantages of read length. However, current long-read assemblers usually introduce disturbing biases or fail to capture the haplotype diversity of the diploid genome. Here, we present phasebook, a novel approach for reconstructing the haplotypes of diploid genomes from long reads de novo. Benchmarking experiments demonstrate that our method outperforms other approaches in terms of haplotype coverage by large margins, while preserving competitive performance or even achieving advantages in terms of all other aspects relevant for genome assembly.


Author(s):  
Seyoung Mun ◽  
Songmi Kim ◽  
Wooseok Lee ◽  
Keunsoo Kang ◽  
Thomas J. Meyer ◽  
...  

AbstractAdvances in next-generation sequencing (NGS) technology have made personal genome sequencing possible, and indeed, many individual human genomes have now been sequenced. Comparisons of these individual genomes have revealed substantial genomic differences between human populations as well as between individuals from closely related ethnic groups. Transposable elements (TEs) are known to be one of the major sources of these variations and act through various mechanisms, including de novo insertion, insertion-mediated deletion, and TE–TE recombination-mediated deletion. In this study, we carried out de novo whole-genome sequencing of one Korean individual (KPGP9) via multiple insert-size libraries. The de novo whole-genome assembly resulted in 31,305 scaffolds with a scaffold N50 size of 13.23 Mb. Furthermore, through computational data analysis and experimental verification, we revealed that 182 TE-associated structural variation (TASV) insertions and 89 TASV deletions contributed 64,232 bp in sequence gain and 82,772 bp in sequence loss, respectively, in the KPGP9 genome relative to the hg19 reference genome. We also verified structural differences associated with TASVs by comparative analysis with TASVs in recent genomes (AK1 and TCGA genomes) and reported their details. Here, we constructed a new Korean de novo whole-genome assembly and provide the first study, to our knowledge, focused on the identification of TASVs in an individual Korean genome. Our findings again highlight the role of TEs as a major driver of structural variations in human individual genomes.


2020 ◽  
Author(s):  
Graham Etherington

De novo assembly of 49 mustelid whole mitochondrial genomes


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu Chen ◽  
Yixin Zhang ◽  
Amy Y. Wang ◽  
Min Gao ◽  
Zechen Chong

AbstractLong-read de novo genome assembly continues to advance rapidly. However, there is a lack of effective tools to accurately evaluate the assembly results, especially for structural errors. We present Inspector, a reference-free long-read de novo assembly evaluator which faithfully reports types of errors and their precise locations. Notably, Inspector can correct the assembly errors based on consensus sequences derived from raw reads covering erroneous regions. Based on in silico and long-read assembly results from multiple long-read data and assemblers, we demonstrate that in addition to providing generic metrics, Inspector can accurately identify both large-scale and small-scale assembly errors.


2018 ◽  
Author(s):  
Simon Roux ◽  
Gareth Trubl ◽  
Danielle Goudeau ◽  
Nandita Nath ◽  
Estelle Couradeau ◽  
...  

Background. Metagenomics has transformed our understanding of microbial diversity across ecosystems, with recent advances enabling de novo assembly of genomes from metagenomes. These metagenome-assembled genomes are critical to provide ecological, evolutionary, and metabolic context for all the microbes and viruses yet to be cultivated. Metagenomes can now be generated from nanogram to subnanogram amounts of DNA. However, these libraries require several rounds of PCR amplification before sequencing, and recent data suggest these typically yield smaller and more fragmented assemblies than regular metagenomes. Methods. Here we evaluate de novo assembly methods of 169 PCR-amplified metagenomes, including 25 for which an unamplified counterpart is available, to optimize specific assembly approaches for PCR-amplified libraries. We first evaluated coverage bias by mapping reads from PCR-amplified metagenomes onto reference contigs obtained from unamplified metagenomes of the same samples. Then, we compared different assembly pipelines in terms of assembly size (number of bp in contigs ≥ 10kb) and error rates to evaluate which are the best suited for PCR-amplified metagenomes. Results. Read mapping analyses revealed that the depth of coverage within individual genomes is significantly more uneven in PCR-amplified datasets versus unamplified metagenomes, with regions of high depth of coverage enriched in short inserts. This enrichment scales with the number of PCR cycles performed, and is presumably due to preferential amplification of short inserts. Standard assembly pipelines are confounded by this type of coverage unevenness, so we evaluated other assembly options to mitigate these issues. We found that a pipeline combining read deduplication and an assembly algorithm originally designed to recover genomes from libraries generated after whole genome amplification (single-cell SPAdes) frequently improved assembly of contigs ≥ 10kb by 10 to 100-fold for low input metagenomes. Conclusions. PCR-amplified metagenomes have enabled scientists to explore communities traditionally challenging to describe, including some with extremely low biomass or from which DNA is particularly difficult to extract. Here we show that a modified assembly pipeline can lead to an improved de novo genome assembly from PCR-amplified datasets, and enables a better genome recovery from low input metagenomes.


2019 ◽  
Author(s):  
Kenta Shirasawa ◽  
Akifumi Azuma ◽  
Fumiya Taniguchi ◽  
Toshiya Yamamoto ◽  
Akihiko Sato ◽  
...  

AbstractThis study presents the first genome sequence of an interspecific grape hybrid, ‘Shine Muscat’ (Vitis labruscana × V. vinifera), an elite table grape cultivar bred in Japan. The complexity of the genome structure, arising from the interspecific hybridization, necessitated the use of a sophisticated genome assembly pipeline with short-read genome sequence data. The resultant genome assemblies consisted of two types of sequences: a haplotype-phased sequence of the highly heterozygous genomes and an unphased sequence representing a “haploid” genome. The unphased sequences spanned 490.1 Mb in length, 99.4% of the estimated genome size, with 8,696 scaffold sequences with an N50 length of 13.2 Mb. The phased sequences had 15,650 scaffolds spanning 1.0 Gb with N50 of 4.2 Mb. The two sequences comprised 94.7% and 96.3% of the core eukaryotic genes, indicating that the entire genome of ‘Shine Muscat’ was represented. Examination of genome structures revealed possible genome rearrangements between the genomes of ‘Shine Muscat’ and a V. vinifera line. Furthermore, full-length transcriptome sequencing analysis revealed 13,947 gene loci on the ‘Shine Muscat’ genome, from which 26,199 transcript isoforms were transcribed. These genome resources provide new insights that could help cultivation and breeding strategies produce more high-quality table grapes such as ‘Shine Muscat’.


Sign in / Sign up

Export Citation Format

Share Document