scholarly journals In Planta Recognition of a Double-Stranded RNA Synthesis Protein Complex by a Potexviral RNA Silencing Suppressor

2014 ◽  
Vol 26 (5) ◽  
pp. 2168-2183 ◽  
Author(s):  
Yukari Okano ◽  
Hiroko Senshu ◽  
Masayoshi Hashimoto ◽  
Yutaro Neriya ◽  
Osamu Netsu ◽  
...  
2021 ◽  
Author(s):  
Linping Wang ◽  
Sylvain Poque ◽  
Karoliina Laamanen ◽  
Jani Saarela ◽  
Antti Poso ◽  
...  

Sweet potato virus disease (SPVD), caused by synergistic infection of Sweet potato chlorotic stunt virus (SPCSV) and Sweet potato feathery mottle virus (SPFMV), is responsible for substantial yield loss all over the world. However, there are currently no approved treatments for this severe disease. The crucial role played by RNase III of SPCSV (CSR3) as RNA silencing suppressor during the viruses' synergistic interaction in sweetpotato makes it an ideal drug target for developing antiviral treatment. In this study, high-throughput screening (HTS) of small molecular libraries targeting CSR3 was initiated by a virtual screen using Glide-docking, allowing the selection of 6,400 compounds out of 136,353. We subsequently developed and carried out a kinetic-based HTS using fluorescence resonance energy transfer technology that isolated 112 compounds. These compounds were validated with dose-response assays including the kinetic-based HTS and binding affinity assays using surface plasmon resonance and microscale thermophoresis. Finally, the interference of the selected compounds with viral accumulation was verified in planta. In summary, we identified five compounds belonging to two structural classes that inhibited CSR3 activity and reduced viral accumulation in plants. These results provide the foundation for developing antiviral agents targeting CSR3 to provide new strategies for controlling sweetpotato virus diseases. Significance statement We report here a high-throughput inhibitor identification that targets a severe sweetpotato virus disease caused by co-infection with two viruses (SPCSV and SPFMV). The disease is responsible for up to 90% yield loss. Specifically, we targeted the RNase III enzyme encoded by SPCSV, which plays an important role in suppressing the RNA silencing defense system of sweetpotato plants. Based on virtual screening, laboratory assays, and confirmation in planta, we identified five compounds that could be used to develop antiviral drugs to combat the most severe sweetpotato virus disease.


2009 ◽  
Vol 36 (5) ◽  
pp. 541-548 ◽  
Author(s):  
Li LIU ◽  
Jian LI ◽  
Yu-Ping XU ◽  
Wen-Tao QIAO ◽  
Qi-Min CHEN ◽  
...  

Plant Biology ◽  
2021 ◽  
Author(s):  
Licheng Wang ◽  
Wenbao Chen ◽  
Huan Ma ◽  
Jingyuan Li ◽  
Xingan Hao ◽  
...  

Virology ◽  
2019 ◽  
Vol 526 ◽  
pp. 45-51 ◽  
Author(s):  
Quan-You Lu ◽  
Lei Yang ◽  
Jinshan Huang ◽  
Luping Zheng ◽  
Xin Sun

Sign in / Sign up

Export Citation Format

Share Document