alfalfa mosaic virus
Recently Published Documents


TOTAL DOCUMENTS

571
(FIVE YEARS 35)

H-INDEX

44
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Zhipeng Guo ◽  
Tingting Zhang ◽  
Zhao Chen ◽  
Junpeng Niu ◽  
Xuewen Cui ◽  
...  

Alfalfa (Medicago sativa L.) is one of the most widely cultivated forage crops in the world. China is the second largest producer of alfalfa in terms of the planting area worldwide, with Gansu, Henan, Inner Mongolia, and Shaanxi provinces being the production hubs. Alfalfa viruses have been reported on a small-scale survey in some of these areas, but they have not been well characterized. In the present study, seven viruses were detected in 12 fields of 10 cities/counties of the four abovementioned provinces by high-throughput sequencing and assembly of small RNA. Their incidence, distribution, and genetic diversity were analyzed by enzyme-linked immunosorbent assay, polymerase chain reaction (PCR)/reverse transcription-PCR and clone sequencing. The results showed that alfalfa mosaic virus (AMV), pea streak virus (PeSV), lucerne transient streak virus (LTSV), alfalfa dwarf virus (ADV), Medicago sativa alphapartitivirus 1 (MsAPV1), MsAPV2, and alfalfa leaf curl virus (ALCV) were the main viruses infecting alfalfa in four examined provinces. AMV and MsAPV1 had the highest incidences in all 4 provinces. SDT analysis of the 7 viruses isolated in China revealed a highly conserved among AMV, LTSV, ADV, MsAPV1, MsAPV2, and ALCV, but the sequence was a high variation between China isolates to abroad isolates in PeSV, ADV, and ALCV. To our knowledge, this is the first report of ADV in Inner Mongolia and Gansu, ALCV in Inner Mongolia, MsAPV1 and MsAPV2 in all 4 provinces, and PeSV and LTSV in China. These findings provide a basis for future research on the genetic evolution of alfalfa viruses in China and on strategies to prevent diseases in alfalfa caused by these viruses.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2498
Author(s):  
Mikhail Oliveira Leastro ◽  
David Villar-Álvarez ◽  
Juliana Freitas-Astúa ◽  
Elliot Watanabe Kitajima ◽  
Vicente Pallás ◽  
...  

Previous results using a movement defective alfalfa mosaic virus (AMV) vector revealed that citrus leprosis virus C (CiLV-C) movement protein (MP) generates a more efficient local movement, but not more systemic transport, than citrus leprosis virus C2 (CiLV-C2) MP, MPs belonging to two important viruses for the citrus industry. Here, competition experiment assays in transgenic tobacco plants (P12) between transcripts of AMV constructs expressing the cilevirus MPs, followed by several biological passages, showed the prevalence of the AMV construct carrying the CiLV-C2 MP. The analysis of AMV RNA 3 progeny recovered from P12 plant at the second viral passage revealed the presence of a mix of progeny encompassing the CiLV-C2 MP wild type (MPWT) and two variants carrying serines instead phenylalanines at positions 72 (MPS72F) or 259 (MPS259F), respectively. We evaluated the effects of each modified residue in virus replication, and cell-to-cell and long-distance movements. Results indicated that phenylalanine at position 259 favors viral cell-to-cell transport with an improvement in viral fitness, but has no effect on viral replication, whereas mutation at position 72 (MPS72F) has a penalty in the viral fitness. Our findings indicate that the prevalence of a viral population may be correlated with its greater efficiency in cell-to-cell and systemic movements.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2701
Author(s):  
Ahmed Abdelkhalek ◽  
Sameer H. Qari ◽  
Mohamed Abd Al-Raheem Abu-Saied ◽  
Abdallah Mohamed Khalil ◽  
Hosny A. Younes ◽  
...  

Plant viral infection is one of the most severe issues in food security globally, resulting in considerable crop production losses. Chitosan is a well-known biocontrol agent against a variety of plant infections. However, research on combatting viral infections is still in its early stages. The current study investigated the antiviral activities (protective, curative, and inactivation) of the prepared chitosan/dextran nanoparticles (CDNPs, 100 µg mL−1) on Nicotiana glutinosa plants. Scanning electron microscope (SEM) and dynamic light scattering analysis revealed that the synthesized CDNPs had a uniform, regular sphere shapes ranging from 20 to 160 nm in diameter, with an average diameter of 91.68 nm. The inactivation treatment was the most effective treatment, which resulted in a 100% reduction in the alfalfa mosaic virus (AMV, Acc# OK413670) accumulation level. On the other hand, the foliar application of CDNPs decreased disease severity and significantly reduced viral accumulation levels by 70.43% and 61.65% in protective and curative treatments, respectively, under greenhouse conditions. Additionally, the induction of systemic acquired resistance, increasing total carbohydrates and total phenolic contents, as well as triggering the transcriptional levels of peroxidase, pathogen-related protein-1, and phenylalanine ammonia-lyase were observed. In light of the results, we propose that the potential application of CDNPs could be an eco-friendly approach to enhance yield and a more effective therapeutic elicitor for disease management in plants upon induction of defense systems.


2021 ◽  
Vol 37 (6) ◽  
pp. 619-631
Author(s):  
Zohreh Moradi ◽  
Mohsen Mehrvar

Alfalfa mosaic virus (AMV), an economically important pathogen, is present worldwide with a very wide host range. This work reports for the first time the infection of Vinca minor and Wisteria sinensis with AMV using RNA sequencing and reverse transcription polymerase chain reaction confirmation. De novo assembly and annotating of contigs revealed that RNA1, RNA2, and RNA3 genomic fragments consist of 3,690, 2,636, and 2,057 nucleotides (nt) for IR-VM and 3,690, 2,594, and 2,057 nt for IR-WS. RNA1 and RNA3 segments of IR-VM and IR-WS closely resembled those of the Chinese isolate HZ, with 99.23-99.26% and 98.04-98.09% nt identity, respectively. Their RNA2 resembled that of Canadian isolate CaM and American isolate OH-2-2017, with 97.96-98.07% nt identity. The P2 gene revealed more nucleotide diversity compared with other genes. Genes in the AMV genome were under dominant negative selection during evolution, and the P1 and coat protein (CP) proteins were subject to the strongest and weakest purifying selection, respectively. In the population genetic analysis based on the CP gene sequences, all 107 AMV isolates fell into two main clades (A, B) and isolates of clade A were further divided into three groups with significant subpopulation differentiation. The results indicated moderate genetic variation within and no clear geographic or genetic structure between the studied populations, implying moderate gene flow can play an important role in differentiation and distribution of genetic diversity among populations. Several factors have shaped the genetic structure and diversity of AMV: selection, recombination/reassortment, gene flow, and random processes such as founder effects.


2021 ◽  
Vol 22 (21) ◽  
pp. 11885
Author(s):  
Aleksandr V. Ivanov ◽  
Irina V. Safenkova ◽  
Anatoly V. Zherdev ◽  
Boris B. Dzantiev

The combination of recombinase polymerase amplification (RPA) and lateral flow test (LFT) is a strong diagnostic tool for rapid pathogen detection in resource-limited conditions. Here, we compared two methods generating labeled RPA amplicons following their detection by LFT: (1) the basic one with primers modified with different tags at the terminals and (2) the nuclease-dependent one with the primers and labeled oligonucleotide probe for nuclease digestion that was recommended for the high specificity of the assay. Using both methods, we developed an RPA-LFT assay for the detection of worldwide distributed phytopathogen—alfalfa mosaic virus (AMV). A forward primer modified with fluorescein and a reverse primer with biotin and fluorescein-labeled oligonucleotide probe were designed and verified by RPA. Both labeling approaches and their related assays were characterized using the in vitro-transcribed mRNA of AMV and reverse transcription reaction. The results demonstrated that the RPA-LFT assay based on primers-labeling detected 103 copies of RNA in reaction during 30 min and had a half-maximal binding concentration 22 times lower than probe-dependent RPA-LFT. The developed RPA-LFT was successfully applied for the detection of AMV-infected plants. The results can be the main reason for choosing simple labeling with primers for RPA-LFT for the detection of other pathogens.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mireya Martínez-Pérez ◽  
Concepción Gómez-Mena ◽  
Luis Alvarado-Marchena ◽  
Riad Nadi ◽  
José Luis Micol ◽  
...  

The N6-methyladenosine (m6A) pathway has been widely described as a viral regulatory mechanism in animals. We previously reported that the capsid protein (CP) of alfalfa mosaic virus (AMV) interacts with the Arabidopsis m6A demethylase ALKBH9B regulating m6A abundance on viral RNAs (vRNAs) and systemic invasion of floral stems. Here, we analyze the involvement of other ALKBH9 proteins in AMV infection and we carry out a detailed evaluation of the infection restraint observed in alkbh9b mutant plants. Thus, via viral titer quantification experiments and in situ hybridization assays, we define the viral cycle steps that are altered by the absence of the m6A demethylase ALKBH9B in Arabidopsis. We found that ALKBH9A and ALKBH9C do not regulate the AMV cycle, so ALKBH9B activity seems to be highly specific. We also define that not only systemic movement is affected by the absence of the demethylase, but also early stages of viral infection. Moreover, our findings suggest that viral upload into the phloem could be blocked in alkbh9b plants. Overall, our results point to ALKBH9B as a possible new component of phloem transport, at least for AMV, and as a potential target to obtain virus resistance crops.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luis Alvarado-Marchena ◽  
Joan Marquez-Molins ◽  
Mireya Martinez-Perez ◽  
Frederic Aparicio ◽  
Vicente Pallás

N6-methyladenosine (m6A) modification is a dynamically regulated RNA modification that impacts many cellular processes and pathways. This epitranscriptomic methylation relies on the participation of RNA methyltransferases (referred to as “writers”) and demethylases (referred to as “erasers”), respectively. We previously demonstrated that the Arabidopsis thaliana protein atALKBH9B showed m6A-demethylase activity and interacted with the coat protein (CP) of alfalfa mosaic virus (AMV), causing a profound impact on the viral infection cycle. To dissect the functional activity of atALKBH9B in AMV infection, we performed a protein-mapping analysis to identify the putative domains required for regulating this process. In this context, the mutational analysis of the protein revealed that the residues between 427 and 467 positions are critical for in vitro binding to the AMV RNA. The atALKBH9B amino acid sequence showed intrinsically disordered regions (IDRs) located at the N-terminal part delimiting the internal AlkB-like domain and at the C-terminal part. We identified an RNA binding domain containing an RGxxxRGG motif that overlaps with the C-terminal IDR. Moreover, bimolecular fluorescent experiments allowed us to determine that residues located between 387 and 427 are critical for the interaction with the AMV CP, which should be critical for modulating the viral infection process. Finally, we observed that atALKBH9B deletions of either N-terminal 20 residues or the C-terminal’s last 40 amino acids impede their accumulation in siRNA bodies. The involvement of the regions responsible for RNA and viral CP binding and those required for its localization in stress granules in the viral cycle is discussed.


2021 ◽  
Vol 559 ◽  
pp. 161-167
Author(s):  
Hyeongseop Jeong ◽  
Youngmin Park ◽  
Sooji Song ◽  
Kyungmin Min ◽  
Jae-Sung Woo ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 459
Author(s):  
Ahmed R. Sofy ◽  
Mahmoud R. Sofy ◽  
Ahmed A. Hmed ◽  
Rehab A. Dawoud ◽  
Ehab E. Refaey ◽  
...  

During the spring of 2019, distinct virus-like symptoms were observed in the Kafr El-Sheikh Governorate in Egypt in naturally infected eggplants. Leaves of affected plants showed interveinal leaf chlorosis, net yellow, chlorotic sectors, mottling, blisters, vein enation, necrotic intervention, and narrowing symptoms. The Alfalfa mosaic virus (AMV) was suspected of to be involved in this disease. Forty plant samples from symptomatic eggplants and 10 leaf samples with no symptoms were collected. The samples were tested by double antibody sandwich ELISA (DAS-ELISA) using AMV-IgG. Six of the 40 symptomatic leaf samples tested positive for AMV, while, DAS-ELISA found no AMV in the 10 leaf samples without symptoms. The AMV Egyptian isolate (AMV-Eggplant-EG) was biologically isolated from the six positive samples tested by DAS-ELISA and from the similar local lesions induced on Chenopodium amaranticolor and then re-inoculated in healthy Solanum melongena as a source of AMV-Eggplant-EG and confirmed by DAS-ELISA. Reverse transcription polymerase chain reaction (RT-PCR) assay with a pair of primers specific for coat protein (CP) encoding RNA 3 of AMV yielded an amplicon of 666 bp from infected plants of Solanum melongena with AMV-Eggplant-EG. The amplified PCR product was cloned and sequenced. Analysis of the AMV-Eggplant-EG sequence revealed 666 nucleotides (nt) of the complete CP gene (translating 221 amino acid (aa) residues). Analysis of phylogeny for nt and deduced aa sequences of the CP gene using the maximum parsimony method clustered AMV-Eggplant-EG in the lineage of Egyptian isolates (shark-EG, mans-EG, CP2-EG, and FRE-EG) with a high bootstrap value of 88% and 92%, respectively. In addition to molecular studies, melatonin (MTL) and salicylic acid (SA) (100 μM) were used to increase the resistance of eggplant to AMV- infection. Foliar spray with MLT and SA caused a significant increase in the morphological criteria (shoot, root length, number of leaves, leaf area, and leaf biomass), chlorophyll and carotenoid content, antioxidant enzymes, and gene expression of some enzymes compared to the infected plants. On the other hand, treatment with MLT and SA reduced the oxidative damage caused by AMV through the reduction of hydrogen peroxide, superoxide anions, hydroxyl radicals, and malondialdehyde. In conclusion, MLT and SA are eco-friendly compounds and can be used as antiviral compounds.


Plant Disease ◽  
2021 ◽  
Author(s):  
RONGBIN HU ◽  
Nayma P. Dias ◽  
Nourolah Soltani ◽  
Jose Andres Vargas-Asencio ◽  
Darrell Hensley ◽  
...  

Viruses and viroids prevalent in a population of 42 wild grapevines (i.e., free-living, uncultivated grapevines; Vitis spp.) were compared to those in a population of 85 cultivated grapevines collected in Tennessee, USA by RNA-seq analysis of pools of ribosomal RNA-depleted total RNA. The sequences of 10 viruses (grapevine fleck virus, grapevine leafroll-associated virus 2, grapevine rupestris stem pitting-associated virus, grapevine Syrah virus 1, grapevine vein-clearing virus, grapevine virus B, grapevine virus E, tobacco ringspot virus, tomato ringspot virus and a novel nano-like virus) and two viroids (hop stunt viroid and grapevine yellow speckle viroid 1) were detected in both grapevine populations. Sequences of four viruses (grapevine associated tymo-like virus, grapevine leafroll-associated virus 3, grapevine red blotch virus and grapevine virus H) were identified only from cultivated grapevines. High, moderate and low numbers of sequence reads were identified only from wild grapevines for a novel caulimovirus, an enamovirus, and alfalfa mosaic virus, respectively. The presence of most virus sequences and both viroids was verified independently in the original samples by reverse transcription-polymerase chain reaction followed by Sanger sequencing. Comparison of viral sequences shared by both populations showed that cultivated and wild grapevines harbored distinct sequence variants, which suggests that there was limited virus movement between the two populations. Collectively, this study represents the first unbiased survey of viruses and viroids in both cultivated and wild grapevines within a defined geographic region.


Sign in / Sign up

Export Citation Format

Share Document