3,5-Bis{4-[(benzimidazol-1-yl)methyl]phenyl}-4H-1,2,4-triazol-4-amine and its one-dimensional polymeric complex with HgCl2

2012 ◽  
Vol 68 (6) ◽  
pp. m152-m155 ◽  
Author(s):  
Yan-an Li ◽  
Qi-Kui Liu ◽  
Jian-Ping Ma ◽  
Yu-Bin Dong

The molecule of 3,5-bis{4-[(benzimidazol-1-yl)methyl]phenyl}-4H-1,2,4-triazol-4-amine (L), C30H24N8, has an antiperiplanar conformation of the two terminal benzimidazole groups and forms two-dimensional networks along the crystallographicbaxisviatwo types of intermolecular hydrogen bonds. However, incatena-poly[[[dichloridomercury(II)]-μ-3,5-bis{4-[(benzimidazol-1-yl)methyl]phenyl}-4H-1,2,4-triazol-4-amine] dichloromethane hemisolvate], {[HgCl2(C30H24N8)]·0.5CH2Cl2}n, synthesized by the combination ofLwith HgCl2, theLligand adopts a synperiplanar conformation. The HgIIcation lies in a distorted tetrahedral environment, which is defined by two N atoms and two Cl atoms to form a one-dimensional zigzag chain. These zigzag chains stackviahydrogen bonds which expand the dimensionality of the structure from one to two.

2013 ◽  
Vol 69 (10) ◽  
pp. 1128-1131 ◽  
Author(s):  
Ming-Liang Liu

The title salt,catena-poly[trimethylsulfonium [μ2-chlorido-di-μ2-thiocyanato-cadmate(II)]] {(C3H9S)[CdCl(NCS)2]}n, consists of trimethylsulfonium cations sandwiched between layers of a two-dimensional polyanion. The CdIIcentre displays a distorted octahedral environment coordinated by two bridging Cl atoms, two thiocyanate N atoms and two thiocyanate S atoms. The thiocyanate groups adopt the μ-1,3-coordination mode and bridge the CdIIcentres into a one-dimensional zigzag chain extended along the [110] direction. The CdIIcentres of the zigzag chains are crosslinked by bridging Cl atoms, forming a two-dimensional polyanion. The two-dimensional anions are linked to layers of trimethylsulfonium cations by weak intermolecular C—H...Cl hydrogen bonds, forming the three-dimensional structure.


2000 ◽  
Vol 78 (10) ◽  
pp. 1289-1294
Author(s):  
Yousheng Zhang ◽  
Suning Wang ◽  
Craig Bridges ◽  
John E Greedan

[Co(2,2'-thiodiethanol)2Cl2] (1) and [Mn(2,2'-thiodiethanol)Cl2]n (2), have been synthesized and characterized structurally. Compound 1 is a six-coordinate, mononuclear Co(II) complex. The mononuclear units in the crystal lattice of 1 are linked together through intermolecular hydrogen bonds between hydroxy and chloride groups to form a three-dimensional array. Compound 2 consists of six-coordinate Mn(II) units that are linked by covalently bound 2,2'-thiodiethanol and chloride ligands to form an alternating one-dimensional chain, which is further linked together by inter-chain hydrogen bonds to form a two-dimensional sheet. Antiferromagnetic exchange is present in compound 2.Key words: cobalt, manganese, 2,2'-thiodiethanol, structure, magnetism.


1991 ◽  
Vol 44 (12) ◽  
pp. 1783 ◽  
Author(s):  
XM Chen ◽  
TCW Mak

The complex silver(I) 3-carboxylato-1-pyridinioacetate monohydrate, [Ag{C5H4(COO)NCH2.COO}]n.nH2O, crystallizes in space group P21/c (No. 14), with Z-4, a 12.233(6), b 5.049(1), c 14.418(7)Ǻ, and β 94.96(4)°; the structure was refined to RF -0.057 for 1721 observed [I ≥ 3σ(I)] Mo Kα data. The silver(I) atom is coordinated by four carboxylato oxygen atoms in a distorted tetrahedral environment [Ag-O 2.284(5)-2.570(5)Ǻ]. The tridentate acetato group bridges the Ag1 atoms into a zigzag chain featuring an uncommon [Ag2( carboxylato -O,O′)(carboxylato-μ-1,1-O)] six- membered ring, and the coordination sphere about each metal centre is completed by the unidentate aromatic carboxylato group, resulting in a two-dimensional network in the solid. The lattice water molecule forms hydrogen bonds with the uncoordinated oxygen atom of the aromatic carboxylato group [2.755(9)Ǻ] and the coordinated oxygen atom of the acetato group [2.936(9)Ǻ].


2012 ◽  
Vol 68 (5) ◽  
pp. o188-o194 ◽  
Author(s):  
Andreas Lemmerer ◽  
Manuel A. Fernandes

Six ammonium carboxylate salts, namely cyclopentylammonium cinnamate, C5H12N+·C9H7O2−, (I), cyclohexylammonium cinnamate, C6H14N+·C9H7O2−, (II), cycloheptylammonium cinnamate form I, C7H16N+·C9H7O2−, (IIIa), and form II, (IIIb), cyclooctylammonium cinnamate, C8H18N+·C9H7O2−, (IV), and cyclododecylammonium cinnamate, C12H26N+·C9H7O2−, (V), are reported. Salts (II)–(V) all have a 1:1 ratio of cation to anion and feature three N+—H...O−hydrogen bonds forming one-dimensional hydrogen-bonded columns consisting of repeatingR43(10) rings, while salt (I) has a two-dimensional network made up of alternatingR44(12) andR68(20) rings. Salt (III) consists of two polymorphic forms,viz.form I havingZ′ = 1 and form II withZ′ = 2. The latter polymorph has disorder of the cycloheptane rings in the two cations, as well as whole-molecule disorder of one of the cinnamate anions. A similar, but ordered,Z′ = 2 structure is seen in salt (IV).


2006 ◽  
Vol 62 (4) ◽  
pp. m731-m733 ◽  
Author(s):  
Hong-Ping Xiao

In the title compound, [Zn(C8H4O5)(H2O)3] n , the ZnII atom is in a five-coordinated environment defined by three aqua O atoms and two carboxylate O atoms from two different 5-hydroxyisophthalate dianions. In the 5-hydroxyisophthalate dianions, two carboxylate groups coordinate two ZnII cations in a bidentate bridging coordination mode, forming a zigzag chain. In addition, O—H...O intermolecular hydrogen bonds link the chains into a three-dimensional network.


Author(s):  
Kai-Long Zhong

A new one-dimensional NiIIcoordination polymer of 1,3,5-tris(imidazol-1-ylmethyl)benzene, namelycatena-poly[[aqua(sulfato-κO)hemi(μ-ethane-1,2-diol-κ2O:O′)[μ3-1,3,5-tris(1H-imidazol-1-ylmethyl)benzene-κ3N3,N3′,N3′′]nickel(II)] ethane-1,2-diol monosolvate monohydrate], {[Ni(SO4)(C18H18N6)(C2H6O2)0.5(H2O)]·C2H6O2·H2O}n, was synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The NiIIcation is coordinated by three N atoms of three different 1,3,5-tris(imidazol-1-ylmethyl)benzene ligands, one O atom of an ethane-1,2-diol molecule, by a sulfate anion and a water molecule, forming a distorted octahedral NiN3O3coordination geometry. The tripodal 1,3,5-tris(imidazol-1-ylmethyl)benzene ligands link the NiIIcations, generating metal–organic chains running along the [100] direction. Adjacent chains are further connected by O—H...O hydrogen bonds, resulting in a two-dimensional supermolecular architecture running parallel to the (001) plane. Another water molecule and a second ethane-1,2-diol molecule are non-coordinating and are linked to the coordinating sulfate ionsviaO—H...O hydrogen bonds.


2006 ◽  
Vol 62 (4) ◽  
pp. o1529-o1531 ◽  
Author(s):  
Li-Ping Zhang ◽  
Long-Guan Zhu

In the crystal structure of the title organic proton-transfer complex, 2C12H11N2 +·C7H4O5S2−·3H2O, the cations form one-dimensional chains via intermolecular N—H...N hydrogen bonds and these chains, in turn, form a two-dimensional network through π–π stacking interactions. In addition, the anions and water molecules are connected into a two-dimensional hydrogen-bonded network through intermolecular O—H...O hydrogen bonds. The two motifs result in sheets of cations and anions stacked alternately.


Author(s):  
Magdalena Wilk ◽  
Jan Janczak ◽  
Veneta Videnova-Adrabinska

The rigid organic ligand (pyridine-3,5-diyl)diphosphonic acid has been used to create the title novel three-dimensional coordination polymer, [Ca(C5H6NO6P2)2(H2O)]n. The six-coordinate calcium ion is in a distorted octahedral environment, formed by five phosphonate O atoms from five different (pyridin-1-ium-3,5-diyl)diphosphonate ligands, two of which are unique, and one water O atom. Two crystallographically independent acid monoanions,L1 andL2, serve to link metal centres using two different coordination modes,viz.η2μ2and η3μ3, respectively. The latter ligand,L2, forms a strongly undulated two-dimensional framework parallel to the crystallographicbcplane, whereas the former ligand,L1, is utilized in the formation of one-dimensional helical chains in the [010] direction. The two sublattices ofL1 andL2 interweave at the Ca2+ions to form a three-dimensional framework. In addition, multiple O—H...O and N—H...O hydrogen bonds stabilize the three-dimensional coordination network. Topologically, the three-dimensional framework can be simplified as a very unusual (2,3,5)-connected three-nodal net represented by the Schläfli symbol (4·82)(4·88·10)(8).


2006 ◽  
Vol 62 (4) ◽  
pp. o1490-o1491
Author(s):  
Xin-Biao Mao ◽  
Tie-Han Li ◽  
Chun-An Ma ◽  
Qing-Bao Song

The title compound, C5H4ClNO3S, was obtained by hydrolysis of 4-chloropyridine-3-sulfonamide in dilute hydrochloric acid. In the crystal structure, one-dimensional chains are formed via N—H...O hydrogen bonds. In addition, weak C—H...Cl hydrogen bonds link these chains into a two-dimensional network


Sign in / Sign up

Export Citation Format

Share Document