Exact conditional joint probability distribution of a three-phase invariant in space group P2. I. Derivation of the Fourier coefficients

1992 ◽  
Vol 48 (4) ◽  
pp. 418-423 ◽  
Author(s):  
U. Shmueli ◽  
G. H. Weiss
2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Huilin Huang

We consider an inhomogeneous growing network with two types of vertices. The degree sequences of two different types of vertices are investigated, respectively. We not only prove that the asymptotical degree distribution of typesfor this process is power law with exponent2+1+δqs+β1-qs/αqs, but also give the strong law of large numbers for degree sequences of two different types of vertices by using a different method instead of Azuma’s inequality. Then we determine asymptotically the joint probability distribution of degree for pairs of adjacent vertices with the same type and with different types, respectively.


Author(s):  
Reza Seifi Majdar ◽  
Hassan Ghassemian

Unlabeled samples and transformation matrix are two main parts of unsupervised and semi-supervised feature extraction (FE) algorithms. In this manuscript, a semi-supervised FE method, locality preserving projection in the probabilistic framework (LPPPF), to find a sufficient number of reliable and unmixed unlabeled samples from all classes and constructing an optimal projection matrix is proposed. The LPPPF has two main steps. In the first step, a number of reliable unlabeled samples are selected based on the training samples, spectral features, and spatial information in the probabilistic framework. In this way, the spectral and spatial probability distribution function is calculated for each unlabeled sample. Therefore, the spectral features and spatial information are integrated together with a joint probability distribution function. Finally, a sufficient number of unlabeled samples with the highest joint probability distribution are selected. In the second step, the selected unlabeled samples are applied to construct the transformation matrix based on the spectral and spatial information of the unlabeled samples. The adjacency graph is improved by using new weights based on spectral and spatial information. This method is evaluated on three data sets: Indian Pines, Pavia University, and Kennedy Space Center (KSC) and compared with some recent and well-known supervised, semi-supervised, and unsupervised FE methods. Various experiments demonstrate the efficiency of the LPPPF in comparison with the other FE methods. LPPPF has also considerable performance with limited training samples.


In this chapter, a fuzzy goal programming (FGP) model is employed for solving multi-objective linear programming (MOLP) problem under fuzzy stochastic uncertain environment in which the probabilistic constraints involves fuzzy random variables (FRVs) following joint probability distribution. In the preceding chapters, the authors explain about linear, fractional, quadratic programming models with multiple conflicting objectives under fuzzy stochastic environment. But the chance constraints in these chapters are considered independently. However, in practical situations, the decision makers (DMs) face various uncertainties where the chance constraints occur jointly. By considering the above fact, the authors presented a solution methodology for fuzzy stochastic MOLP (FSMOLP) with joint probabilistic constraint following some continuous probability distributions. Like the other chapters, chance constrained programming (CCP) methodology is adopted for handling probabilistic constraints. But the difference is that in the earlier chapters chance constraints are considered independently, whereas in this chapter all the chance constraints are taken jointly. Then the transformed problem involving possibilistic uncertainty is converted into a comparable deterministic problem by using the method of defuzzification of the fuzzy numbers (FNs). Objectives are now solved independently under the set of modified system constraints to obtain the best solution of each objective. Then the membership function for each objective is constructed, and finally, a fuzzy goal programming (FGP) model is developed for the achievement of the highest membership goals to the extent possible by minimizing group regrets in the decision-making context.


Sign in / Sign up

Export Citation Format

Share Document