arrhenius parameters
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 8)

H-INDEX

36
(FIVE YEARS 3)

Author(s):  
Кирилл Вячеславович Чалов ◽  
Юрий Владимирович Луговой ◽  
Михаил Геннадьевич Сульман ◽  
Юрий Юрьевич Косивцов

В данной работе представлено исследование кинетики процесса термодеструкции полимеров. Процесс пиролиза полиэтилена высокого давления и сшитого полиэтилена изучался методом термогравиметрии. Для определения кинетической модели деструкции и параметров Аррениуса разложение образцов проводилось с различной скоростью нагрева (2,5; 5 и 10 К/мин). В ходе моделирования процесса пиролиза была определена наиболее адекватная модель: термодеструкция включает две последовательные стадии с автокатализом на первой стадии. Энергии активации деструкции полиэтилена составили 111 и 91 кДж/моль для первой и второй стадии соответственно. В случае сшитого полиэтилена - 175 и 308 кДж/моль. This paper presents a study of the kinetics of the process of thermal degradation of polymers. The pyrolysis process of high-pressure polyethylene and cross-linked polyethylene was studied by thermogravimetry. To determine the kinetic model of destruction and Arrhenius parameters, the samples were decomposed at different heating rates (2.5, 5, and 10 K / min). During the simulation of the pyrolysis process, the most adequate model was determined: thermal degradation includes two consecutive stages with autocatalysis at the first stage. The activation energies of polyethylene degradation were 111 and 91 kJ/mol for the first and second stages, respectively. In the case of cross-linked polyethylene - 175 and 308 kJ/mol.


2020 ◽  
Vol 94 (1) ◽  
pp. 30-40 ◽  
Author(s):  
E. Mliki ◽  
T. K. Srinivasa ◽  
A. Messaâdi ◽  
N. O. Alzamel ◽  
Z. H. A. Alsunaidi ◽  
...  

2019 ◽  
Vol 123 (10) ◽  
pp. 6284-6293 ◽  
Author(s):  
David Albinsson ◽  
Sara Nilsson ◽  
Tomasz J. Antosiewicz ◽  
Vladimir P. Zhdanov ◽  
Christoph Langhammer

2019 ◽  
Author(s):  
Brian Pinkard ◽  
David Gorman ◽  
Elizabeth Rasmussen ◽  
John Kramlich ◽  
Per G. Reinhall ◽  
...  

The decomposition of formic acid is studied in a continuous sub- or supercritical water reactor at temperatures between 300 and 430°C, a pressure of 25 MPa, residence times between 4 and 65 s, and a feedstock concentration of 3.6 wt%. <i>In-situ </i>Raman spectroscopy is used to produce real-time data and accurately quantify decomposition product yields of H<sub>2</sub>, CO<sub>2</sub>, and CO. Collected spectra are used to determine global decomposition rates and kinetic rates for individual reaction pathways. First-order global Arrhenius parameters are determined as log <i>A</i> (s<sup>-1</sup>) = 1.6 ± 0.20 and <i>E<sub>A </sub></i>= 9.5 ± 0.55 kcal/mol for subcritical decomposition, and log <i>A</i> (s<sup>-1</sup>) = 12.56 ± 1.96 and <i>E<sub>A </sub></i>= 41.90 ± 6.08 kcal/mol for supercritical decomposition. Subcritical and supercritical Arrhenius parameters for individual pathways are proposed. The variance in rate parameters is likely due to changing thermophysical properties of water across the critical point. There is strong evidence for a surface catalyzed free-radical mechanism responsible for rapid decomposition above the critical point, facilitated by low density at supercritical conditions.


2019 ◽  
Author(s):  
Brian Pinkard ◽  
David Gorman ◽  
Elizabeth Rasmussen ◽  
John Kramlich ◽  
Per G. Reinhall ◽  
...  

The decomposition of formic acid is studied in a continuous sub- or supercritical water reactor at temperatures between 300 and 430°C, a pressure of 25 MPa, residence times between 4 and 65 s, and a feedstock concentration of 3.6 wt%. <i>In-situ </i>Raman spectroscopy is used to produce real-time data and accurately quantify decomposition product yields of H<sub>2</sub>, CO<sub>2</sub>, and CO. Collected spectra are used to determine global decomposition rates and kinetic rates for individual reaction pathways. First-order global Arrhenius parameters are determined as log <i>A</i> (s<sup>-1</sup>) = 1.6 ± 0.20 and <i>E<sub>A </sub></i>= 9.5 ± 0.55 kcal/mol for subcritical decomposition, and log <i>A</i> (s<sup>-1</sup>) = 12.56 ± 1.96 and <i>E<sub>A </sub></i>= 41.90 ± 6.08 kcal/mol for supercritical decomposition. Subcritical and supercritical Arrhenius parameters for individual pathways are proposed. The variance in rate parameters is likely due to changing thermophysical properties of water across the critical point. There is strong evidence for a surface catalyzed free-radical mechanism responsible for rapid decomposition above the critical point, facilitated by low density at supercritical conditions.


2019 ◽  
Vol 10 (30) ◽  
pp. 4116-4125 ◽  
Author(s):  
Anil B. Vir ◽  
Yoshi W. Marien ◽  
Paul H. M. Van Steenberge ◽  
Christopher Barner-Kowollik ◽  
Marie-Françoise Reyniers ◽  
...  

A stepwise method to estimate the Arrhenius parameters for backbiting, tertiary propagation, and β-scission in acrylate radical polymerization.


2017 ◽  
Vol 91 (9) ◽  
pp. 1654-1659 ◽  
Author(s):  
R. B. H. Kacem ◽  
N. O. Alzamel ◽  
N. Ouerfelli
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document