Iodo-nitroarenesulfonamides: interplay of hard and soft hydrogen bonds, I...O interactions and aromatic π...π stacking interactions

2001 ◽  
Vol 58 (1) ◽  
pp. 94-108 ◽  
Author(s):  
Craig J. Kelly ◽  
Janet M. S. Skakle ◽  
James L. Wardell ◽  
Solange M. S. V. Wardell ◽  
John N. Low ◽  
...  

Molecules of N-(4′-iodophenylsulfonyl)-4-nitroaniline, 4-O2NC6H4NHSO2C6H4I-4′ (1), are linked by three-centre I...O2N interactions into chains and these chains are linked into a three-dimensional framework by C—H...O hydrogen bonds. In the isomeric N-(4′-nitrophenylsulfonyl)-4-iodoaniline, 4-IC6H4NHSO2C6H4NO2-4′ (2), the chains generated by the I...O2N interactions are again linked into a three-dimensional framework by C—H...O hydrogen bonds. Molecules of N,N-bis(3′-nitrophenylsulfonyl)-4-iodoaniline, 4-IC6H4N(SO2C6H4NO2-3′)2 (3), lie across twofold rotation axes in space group C2/c and they are linked into chains by paired I...O=S interactions: these chains are linked into sheets by a C—H...O hydrogen bond, and the sheets are linked into a three-dimensional framework by aromatic π...π stacking interactions. In N-(4′-iodophenylsulfonyl)-3-nitroaniline, 3-O2NC6H4NHSO2C6H4I-4′ (4), there are R^2_2(8) rings formed by hard N—H...O=S hydrogen bonds and R^2_2(24) rings formed by two-centre I...nitro interactions, which together generate a chain of fused rings: the combination of a C—H...O hydrogen bond and aromatic π...π stacking interactions links the chains into sheets. Molecules of N-(4′-iodophenylsulfonyl)-4-methyl-2-nitroaniline, 4-CH3-2-O2NC6H3NHSO2C6H4I-4′ (5), are linked by N—H...O=S and C—H...O(nitro) hydrogen bonds into a chain containing alternating R^2_2(8) and R^2_2(10) rings, but there are no I...O interactions of either type. There are two molecules in the asymmetric unit of N-(4′-iodophenylsulfonyl)-2-nitroaniline, 2-O2NC6H4NHSO2C6H4I-4′ (6), and the combination of an I...O=S interaction and a hard N—H...O(nitro) hydrogen bond links the two types of molecule to form a cyclic, centrosymmetric four-component aggregate. C—H...O hydrogen bonds link these four-molecule aggregates to form a molecular ladder. Comparisons are made with structures retrieved from the Cambridge Structural Database.

2016 ◽  
Vol 72 (9) ◽  
pp. 670-678 ◽  
Author(s):  
Tholappanavara H. Suresha Kumara ◽  
Gopalpur Nagendrappa ◽  
Nanjappa Chandrika ◽  
Haliwana B. V. Sowmya ◽  
Manpreet Kaur ◽  
...  

Hydrazone derivatives exhibit a wide range of biological activities, while pyrazolo[3,4-b]quinoline derivatives, on the other hand, exhibit both antimicrobial and antiviral activity, so that all new derivatives in these chemical classes are potentially of value. Dry grinding of a mixture of 2-chloroquinoline-3-carbaldehyde and 4-methylphenylhydrazinium chloride gives (E)-1-[(2-chloroquinolin-3-yl)methylidene]-2-(4-methylphenyl)hydrazine, C17H14ClN3, (I), while the same regents in methanol in the presence of sodium cyanoborohydride give 1-(4-methylphenyl)-4,9-dihydro-1H-pyrazolo[3,4-b]quinoline, C17H15N3, (II). The reactions between phenylhydrazinium chloride and either 2-chloroquinoline-3-carbaldehyde or 2-chloro-6-methylquinoline-3-carbaldehyde give, respectively, 1-phenyl-1H-pyrazolo[3,4-b]quinoline, C16H11N3, (III), which crystallizes in the space groupPbcnas a nonmerohedral twin havingZ′ = 3, or 6-methyl-1-phenyl-1H-pyrazolo[3,4-b]quinoline, C17H13N3, (IV), which crystallizes in the space groupR\overline{3}. The molecules of compound (I) are linked into sheets by a combination of N—H...N and C—H...π(arene) hydrogen bonds, and the molecules of compound (II) are linked by a combination of N—H...N and C—H...π(arene) hydrogen bonds to form a chain of rings. In the structure of compound (III), one of the three independent molecules forms chains generated by C—H...π(arene) hydrogen bonds, with a second type of molecule linked to the chains by a second C—H...π(arene) hydrogen bond and the third type of molecule linked to the chain by multiple π–π stacking interactions. A single C—H...π(arene) hydrogen bond links the molecules of compound (IV) into cyclic centrosymmetric hexamers having \overline{3} (S6) symmetry, which are themselves linked into a three-dimensional array by π–π stacking interactions.


2006 ◽  
Vol 62 (4) ◽  
pp. 666-675 ◽  
Author(s):  
Christopher Glidewell ◽  
John N. Low ◽  
Janet M. S. Skakle ◽  
James L. Wardell

The structures of five of the possible six isomers of (E,E)-1,4-bis(nitrophenyl)-2,3-diaza-1,3-butadiene are reported, including two polymorphs of one of the isomers. (E,E)-1,4-Bis(2-nitrophenyl)-2,3-diaza-1,3-butadiene, C14H10N4O4 (I), crystallizes in two polymorphic forms (Ia) and (Ib) in which the molecules lie across centres of inversion in space groups P21/n and P21/c, respectively: the molecules in (Ia) and (Ib) are linked into chains by aromatic π...π stacking interactions and C—H...π(arene) hydrogen bonds, respectively. Molecules of (E,E)-1-(2-nitrophenyl)-4-(3-nitrophenyl)-2,3-diaza-1,3-butadiene (II) are linked into sheets by two independent C—H...O hydrogen bonds. The molecules of (E,E)-1,4-bis(3-nitrophenyl)-2,3-diaza-1,3-butadiene (III) lie across inversion centres in the space group P21/n, and a combination of a C—H...O hydrogen bond and a π...π stacking interaction links the molecules into sheets. A total of four independent C—H...O hydrogen bonds link the molecules of (E,E)-1-(3-nitrophenyl)-4-(4-nitrophenyl)-2,3-diaza-1,3-butadiene (IV) into sheets. In (E,E)-1,4-bis(4-nitrophenyl)-2,3-diaza-1,3-butadiene (V) the molecules, which lie across centres of inversion in the space group P21/n, are linked by just two independent C—H...O hydrogen bonds into a three-dimensional framework.


Author(s):  
Ligia R. Gomes ◽  
John Nicolson Low ◽  
James L. Wardell

Isomeric 5-bromo-3-nitrosalicylaldehyde phenylhydrazone and 3-bromo-5-nitrosalicylaldehyde phenylhydrazone, C13H10BrN3O3, both crystallize with two molecules in the asymmetric unit. In both isomers, an intramolecular O—H...N hydrogen bond links the hydroxy group and the imine N atom. In the 5-bromo-3-nitro isomer, there are two independent N—H...O hydrogen-bonded chains, each molecule in the asymmetric unit forming its own chain. These chains are then linked to form a three-dimensional framework by a combination of weak C—H...O, C—H...Br, C—H...π and π–π stacking interactions. In the 3-bromo-5-nitro isomer, N—H...O hydrogen bonds link the independent molecules alternately into a zigzag chain, which is reinforced by a weak C—H...O interaction. Individual chains are linked by a C—H...Br interaction and a three-dimensional framework is generated by π–π stacking interactions.


2012 ◽  
Vol 68 (11) ◽  
pp. o439-o442 ◽  
Author(s):  
Jairo Quiroga ◽  
Jaime Gálvez ◽  
Justo Cobo ◽  
Christopher Glidewell

The racemic title dipyrrolopyrrolizine compound crystallizes from dimethylformamide as a disolvate, C55H39Cl2N7O6·2C3H7NO. None of the four fused heterocyclic rings is planar; one adopts an envelope conformation, two others adopt half-chair conformations and the fourth adopts a conformation intermediate between an envelope and a half-chair. The arrangement of the ring fusions is such as to preclude the possibility of internal mirror symmetry. The three independent molecular components are weakly linked by C—H...O hydrogen bonds, and the dipyrrolopyrrolizine molecules are linked by a combination of four C—H...O and one C—H...π(arene) hydrogen bond to form a three-dimensional framework, from which the dimethylformamide solvent molecules are pendent. However, aromatic π–π stacking interactions are absent in the structure.


Author(s):  
Ligia Rebelo Gomes ◽  
John Nicolson Low ◽  
Ana S. M. C. Rodrigues ◽  
James L. Wardell ◽  
Marcus V. N. de Souza ◽  
...  

(E)-2-(2-Benzylidenehydrazinylidene)quinoxaline, C15H12N4, crystallized with two molecules in the asymmetric unit. The structures of six halogen derivatives of this compound were also investigated: (E)-2-[2-(2-chlorobenzylidene)hydrazinylidene]quinoxaline, C15H11ClN4; (E)-2-[2-(3-chlorobenzylidene)hydrazinylidene]quinoxaline, C15H11ClN4; (E)-2-[2-(4-chlorobenzylidene)hydrazinylidene]quinoxaline, C15H11ClN4; (E)-2-[2-(2-bromobenzylidene)hydrazinylidene]quinoxaline, C15H11BrN4; (E)-2-[2-(3-bromobenzylidene)hydrazinylidene]quinoxaline, C15H11BrN4; (E)-2-[2-(4-bromobenzylidene)hydrazinylidene]quinoxaline, C15H11BrN4. The 3-Cl and 3-Br compounds are isomorphous, as are the 4-Cl and 4-Br compounds. In all of these compounds, it was found that the supramolecular structures are governed by similar predominant patterns,viz.strong intermolecular N—H...N(pyrazine) hydrogen bonds supplemented by weak C—H...N(pyrazine) hydrogen-bond interactions in the 2- and 3-halo compounds and by C—H...Cl/Br interactions in the 4-halo compounds. In all compounds, there are π–π stacking interactions.


IUCrData ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
A. Benosmane ◽  
D. A. Rouag ◽  
A. Mili ◽  
H. Merazig ◽  
M. A. Benaouida

The crystal structure of the title compound, C16H13N3O3S, shows that the two independent zwitterions in the asymmetric unit are approximately planar. Intramolecular N—H...O hydrogen bonds occur and the aromatic rings have atransconfiguration with respect to the azo double bond. In the crystal, the molecules are linkedviaN—H...O hydrogen bonds and π–π stacking, forming a three-dimensional supramolecular network, the π–π stacking interactions between adjacent benzene and naphthalene rings having centroid-to-centroid distances of 3.764 (3) and 3.775 (3) Å.


2014 ◽  
Vol 70 (8) ◽  
pp. 805-811 ◽  
Author(s):  
Channappa N. Kavitha ◽  
Hemmige S. Yathirajan ◽  
Manpreet Kaur ◽  
Eric C. Hosten ◽  
Richard Betz ◽  
...  

The structures of two salts of flunarizine, namely 1-bis[(4-fluorophenyl)methyl]-4-[(2E)-3-phenylprop-2-en-1-yl]piperazine, C26H26F2N2, are reported. In flunarizinium nicotinate {systematic name: 4-bis[(4-fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium pyridine-3-carboxylate}, C26H27F2N2+·C6H4NO2−, (I), the two ionic components are linked by a short charge-assisted N—H...O hydrogen bond. The ion pairs are linked into a three-dimensional framework structure by three independent C—H...O hydrogen bonds, augmented by C—H...π(arene) hydrogen bonds and an aromatic π–π stacking interaction. In flunarizinediium bis(4-toluenesulfonate) dihydrate {systematic name: 1-[bis(4-fluorophenyl)methyl]-4-[(2E)-3-phenylprop-2-en-1-yl]piperazine-1,4-diium bis(4-methylbenzenesulfonate) dihydrate}, C26H28F2N22+·2C7H7O3S−·2H2O, (II), one of the anions is disordered over two sites with occupancies of 0.832 (6) and 0.168 (6). The five independent components are linked into ribbons by two independent N—H...O hydrogen bonds and four independent O—H...O hydrogen bonds, and these ribbons are linked to form a three-dimensional framework by two independent C—H...O hydrogen bonds, but C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions are absent from the structure of (II). Comparisons are made with some related structures.


2002 ◽  
Vol 58 (2) ◽  
pp. 289-299 ◽  
Author(s):  
Dorcas M. M. Farrell ◽  
Christopher Glidewell ◽  
John N. Low ◽  
Janet M. S. Skakle ◽  
Choudhury M. Zakaria

N,N′-Dithiobisphthalimide, C16H8N2O4S2 (I), forms a wide range of polymorphs and solvates (pseudopolymorphs). When (I) is crystallized from methanol it yields a solvent-free polymorph (4), in Pna21 with Z′ = 1, in which the molecules are linked into chains by a single C—H...O hydrogen bond: crystallization from either acetonitrile or dimethylformamide produces a monoclinic polymorph (5), in P21/c with Z′ = 2, also solvent-free, in which the molecules are linked into molecular ladders. Nitromethane forms a monosolvate, C16H8N2O4S2·CH3NO2 (6), in P21/c with Z′ = 1, in which the solvent molecules are linked to the molecules of (I) not only via a conventional C—H...O hydrogen bond but also via a polarized multicentre interaction involving all three C—H bonds of the solvent molecule. Chlorobenzene forms a precise hemisolvate, C16H8N2O4S2·0.5C6H5Cl (7), in P{\bar 1 } with Z′ = 1, while ethylbenzene forms an approximate hemisolvate 2C16H8N2O4S2·0.913C6H5C2H5·0.087H2O (8), in P21/c with eight molecules of (I) per unit cell. In both solvates the molecules of (I) are linked, in (7) by π...π stacking interactions augmented by weak C—H...O hydrogen bonds and in (8) by stronger C—H...O hydrogen bonds: the solvent molecules lie in isolated cavities, disordered across inversion centres in (7) and fully ordered in general positions in (8). Crystallization of (I) either from tetrahydrofuran or from wet tert-butanol yields isomorphous solvates (9) and (10), respectively, in C2/c with Z′ = 0.5, in which molecules of (I) lie across twofold rotation axes and are linked by π...π stacking interactions and very weak C—H...O hydrogen bonds, forming a framework enclosing continuous channels: highly disordered solvent molecules lie within these channels. p-Xylene and toluene form isomorphous hemisolvates (11) and (12) with unit cells metrically very similar to those of (9) and (10), but in P21/n with Z′ = 1: in these two solvates the molecules of (I) are linked into a framework by very short C—H...O hydrogen bonds; the solvent molecules lie within continuous channels, but they are localized across inversion centres so that the toluene is disordered across an inversion centre.


2017 ◽  
Vol 73 (9) ◽  
pp. 674-681 ◽  
Author(s):  
Zouaoui Setifi ◽  
Daniel Zambon ◽  
Fatima Setifi ◽  
Malika El-Ghozzi ◽  
Rachid Mahiou ◽  
...  

Three photoluminescent complexes containing either ZnII or CdII have been synthesized and their structures determined. Bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ2 N 1,N 5]bis(dicyanamido-κN 1)zinc(II), [Zn(C12H10N6)2(C2N3)2], (I), bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ2 N 1,N 5]bis(dicyanamido-κN 1)cadmium(II), [Cd(C12H10N6)2(C2N3)2], (II), and bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ2 N 1,N 5]bis(tricyanomethanido-κN 1)cadmium(II), [Cd(C12H10N6)2(C4N3)2], (III), all crystallize in the space group P\overline{1}, with the metal centres lying on centres of inversion, but neither analogues (I) and (II) nor CdII complexes (II) and (III) are isomorphous. A combination of N—H...N and C—H...N hydrogen bonds and π–π stacking interactions generates three-dimensional framework structures in (I) and (II), and a sheet structure in (III). The photoluminescence spectra of (I)–(III) indicate that the energies of the π–π* transitions in the coordinated triazole ligand are modified by minor changes of the ligand geometry associated with coordination to the metal centres.


Author(s):  
E. Mesto ◽  
E. Quaranta

The crystal structures of 8-phenoxycarbonyl-1,8-diazabicyclo[5.4.0]undec-7-enium chloride, C16H21N2O2+·Cl−, (I), and 8-methoxycarbonyl-1,8-diazabicyclo[5.4.0]undec-7-enium chloride monohydrate, C11H19N2O2+·Cl−·H2O, (II), recently reported by Carafa, Mesto & Quaranta [Eur. J. Org. Chem.(2011), pp. 2458–2465], are analysed and discussed with a focus on crystal interaction assembly. Both compounds crystallize in the space groupP21/c. The crystal packings are characterized by dimers linked through π–π stacking interactions and intermolecular nonclassical hydrogen bonds, respectively. Additional intermolecular C—H...Cl interactions [in (I) and (II)] and classical O—H...Cl hydrogen bonds [in (II)] are also evident and contribute to generating three-dimensional hydrogen-bonded networks.


Sign in / Sign up

Export Citation Format

Share Document