Low-temperature enantiotropic k2 phase transition in the ionic 222-cryptand complex with LiClO4

2007 ◽  
Vol 63 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Ilia A. Guzei ◽  
Lara C. Spencer ◽  
Joe W. Su ◽  
Ronald R. Burnette

Crystallographic analyses at 100 and 200 K are reported for the macrobicyclic polyether 4,7,13,16,21,24-hexaoxa-1,10-diaza-bicyclo[8.8.8]hexacosane (denoted as 222-cryptand) that encapsulates a Li+ cation and then forms a complex (I) with ClO_4^-. Compound (I) undergoes a reversible second-order k phase transition at 253 (2) K from an almost ordered structure [space group P212121] at 100 K to a more disordered structure that exhibits a different unit cell [P21212 (2c′ = c)] above 253 (2) K. At 295 K the Li+ cation and five atoms of the perchlorate anion are each disordered over at least two positions about a crystallographic twofold axis [Chekhlov (2003). Russ. J. Coord. Chem. 29, 828–832]; as the temperature decreases the dynamic positional disorder is slowly frozen out, but is still observed for lithium even at 100 K. Based upon DFT computations, it seems that in the solid state the position of the Li+ cation in the cavity of the 222-cryptand below 253 (2) K likely corresponds to a local energy minimum; the global minimum in the gas phase corresponds to a near D 3 symmetrical conformation of the 222-cryptand with the undersized Li+ cation residing in the center of its cavity.

2001 ◽  
Vol 123 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Jun Ishimoto ◽  
Mamoru Oike ◽  
Kenjiro Kamijo

The two-dimensional characteristics of the vapor-liquid two-phase flow of liquid helium in a pipe are numerically investigated to realize the further development and high performance of new cryogenic engineering applications. First, the governing equations of the two-phase flow of liquid helium based on the unsteady thermal nonequilibrium multi-fluid model are presented and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the two-phase flow of liquid helium is shown in detail, and it is also found that the phase transition of the normal fluid to the superfluid and the generation of superfluid counterflow against normal fluid flow are conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase. According to these theoretical results, the fundamental characteristics of the cryogenic two-phase flow are predicted. The numerical results obtained should contribute to the realization of advanced cryogenic industrial applications.


1996 ◽  
Vol 105 (5) ◽  
pp. 2020-2027 ◽  
Author(s):  
Lidia Strigari ◽  
Mauro Rovere ◽  
Bruno D’Aguanno

1974 ◽  
Vol 96 (12) ◽  
pp. 3816-3820 ◽  
Author(s):  
Robert C. Dunbar ◽  
Bennett B. Hutchinson

2014 ◽  
Vol 31 (4) ◽  
pp. 042001 ◽  
Author(s):  
Natacha Altamirano ◽  
David Kubizňák ◽  
Robert B Mann ◽  
Zeinab Sherkatghanad

1994 ◽  
Vol 72 (7) ◽  
pp. 1709-1721 ◽  
Author(s):  
Erwin Buncel ◽  
Richard M. Tarkka ◽  
Julian M. Dust

Heats of formation (ΔHf) for a series of aromatics that are progressively more electron deficient (benzene, 6; nitrobenzene, 7; 4-fluoronitrobenzene, 8; 1,3-dinitrobenzene, 9; 2,4,6-trinitroanisole, 2; and 1,3,5-trinitrobenzene, 1) were determined by semiempirical AM1 calculations. As a probe of the factors that govern the regioselectivity exhibited in the formation of anionic σ-adducts (Meisenheimer complexes), experimental gas-phase ΔHf values for the prototypical oxygen and carbon nucleophiles (hydroxide, methoxide, and methide anions) were used in a thermochemical calculation along with the calculated ΔHf of the electrophiles and the adducts to determine the heats of complexation (ΔHc). The present results show that for the series of nitroaryl electrophiles, 7, 9, and 1, hydroxide and methide anions exhibit the same regioselectivity based on thermodynamics of Meisenheimer complex formation. Specifically, Meisenheimer complexes derived from attack at a position para to at least one nitro group (designated MC-4) are formed with the greatest exothermicity (ΔHc). Exothermicity of complexation increases for both hydroxide and methide adduct formation as the number of nitro groups in the electrophile is increased, from 7 to 9 and to 1, but formation of the methide adducts occurs uniformly with greater exothermicity than that of hydroxide adducts. These results are considered in light of solution calorimetric data that quantify adduct stability in condensed phases. Surprisingly, it is found that regioselectivity inverts for CH3−as compared to OH−and CH3O−in complexation with 2,4,6-trinitroanisole, 2. Thus, while methoxide and hydroxide form adducts at C-1 of TNA with higher exothermicity than at C-3, methide preferentially forms an adduct at C-3 according to the same enthalpy criterion. These results arise from the degree of stereoelectronic stabilization that may be imparted to the respective Meisenheimer complexes formed from ipso attack, that is, the adducts (MC-1) that are geminally disubstituted with electronegative heteroatom groups. For the methoxide MC-1 of TNA, 2, full stereoelectronic stabilization is provided by n–σ* donation from nonbonding electron pairs of the acetal-like methoxyl moieties to suitable C—O acceptor bonds. However, the methide moiety of the comparable MC-1 of TNA cannot partake in such an interaction and, so, with methide, MC-3 formation is preferred over MC-1. Further evidence is provided by consideration of the two energy minima obtained from optimization of the geometry of the oxygen-centred adducts formed by attack of methoxide at C-1 of TNA, 2. In the presence of a point charge that simulates an ion-paired cation, an "M-shaped" conformer is favoured for MC-1, while in the absence of a counterion the "S-shaped" conformer is favoured. Without a complexing counterion M and S conformers are both local minima, while the "S" conformer constitutes the global minimum. The AM1 optimized structure for the "M" conformer compares favourably to published X-ray data. The greater exothermicity of formation of the "S" conformer in the absence of the counterion is indicative of stereoelectronic stabilization of the O-adduct. The geometry is rationalized as a result of minimizing steric repulsion and maximizing the n-σ* stabilization of the C-1 adduct.


Sign in / Sign up

Export Citation Format

Share Document