Three-dimensional strain-field information in convergent-beam electron diffraction patterns

1982 ◽  
Vol 38 (1) ◽  
pp. 55-61 ◽  
Author(s):  
R. W. Carpenter ◽  
J. C. H. Spence
2014 ◽  
Vol 70 (a1) ◽  
pp. C1455-C1455 ◽  
Author(s):  
Colin Ophus ◽  
Peter Ercius ◽  
Michael Sarahan ◽  
Cory Czarnik ◽  
Jim Ciston

Traditional scanning transmission electron microscopy (STEM) detectors are monolithic and integrate a subset of the transmitted electron beam signal scattered from each electron probe position. These convergent beam electron diffraction patterns (CBED) are extremely rich in information, containing localized information on sample structure, composition, phonon spectra, three-dimensional defect crystallography and more. Many new imaging modes become possible if the full CBED pattern is recorded at many probe positions with millisecond dwell times. In this study, we have used a Gatan K2-IS direct electron detection camera installed on an uncorrected FEI Titan-class transmission electron microscope to record 4D-STEM probe diffraction patterns on a variety of samples at up to 1600 frames per second. As an example, a 4D-STEM dataset for a multilayer stack of epitaxial SrTiO3 and mixed LaMnO3-SrTiO3 is plotted in Figure 1. Figure 1A shows a HAADF micrograph of the multilayer along a (001) zone axis. Only the A sites (Sr and La) are visible in this micrograph and the composition can be roughly determined from the relative brightness. One possible 4D-STEM technique is position-averaged convergent beam electron diffraction (PACBED) described by LeBeau et al. [1]. We can easily construct ideal PACBED patterns by averaging the probe images over each unit cell fitted from Figure 1A, which is shown in Figure 1B. By matching these patterns to PACBED images simulated with the multislice method we can precisely determine parameters such as sample thickness and composition, the latter of which is plotted in Figure 1C. For comparison, the composition has also been determined with electron energy loss spectroscopy (EELS) in a separate experiment, shown in Figure 1D. The composition range of 0-85% LaMnO3 measured by PACBED is in good agreement with the EELS measurements. In this talk we will demonstrate several other possible uses for 4D-STEM datasets.


Author(s):  
John F. Mansfield

One of the most important advancements of the transmission electron microscopy (TEM) in recent years has been the development of the analytical electron microscope (AEM). The microanalytical capabilities of AEMs are based on the three major techniques that have been refined in the last decade or so, namely, Convergent Beam Electron Diffraction (CBED), X-ray Energy Dispersive Spectroscopy (XEDS) and Electron Energy Loss Spectroscopy (EELS). Each of these techniques can yield information on the specimen under study that is not obtainable by any other means. However, it is when they are used in concert that they are most powerful. The application of CBED in materials science is not restricted to microanalysis. However, this is the area where it is most frequently employed. It is used specifically to the identification of the lattice-type, point and space group of phases present within a sample. The addition of chemical/elemental information from XEDS or EELS spectra to the diffraction data usually allows unique identification of a phase.


Author(s):  
P.A. Midgley ◽  
R. Vincent ◽  
D. Cherns

The oxygenation of YBa2Cu3O7−x (YBCO) leads to an orthorhombic distortion of the unit cell to accommodate the extra oxygen atom. This makes the formation of twins energetically favourable with CuO4 planar unit chains running alternately along the a and b axes of the parent tetragonal structure. The geometry of this twinning is such that four possible twin variants may co-exist with the twin boundaries lying in the (110) or (110) planes of the deformed structure. The traces of these planes are not mutually perpendicular and thus the crystal is strained to allow for the mismatch. It is to the nature of this strain field that this work has been addressed.Sintered samples were prepared by crushing and dispersing the resultant powder onto a very fine Cu mesh grid. Single crystals were chemically thinned to perforation. No discernible artefacts were seen and similar results were obtained with either method.


Sign in / Sign up

Export Citation Format

Share Document