crystallographic structure
Recently Published Documents


TOTAL DOCUMENTS

1311
(FIVE YEARS 289)

H-INDEX

76
(FIVE YEARS 8)

Author(s):  
Qiang Huang

Abstract A systematic electrochemical study is carried out on electrolytes with superhigh concentrations of fructose. The effect of fructose concentration on the viscosity and conductivity of electrolyte are determined and analyzed using Walden rule and the theory of rate process. The diffusion rates of proton and cupric cation are calculated from the peak current in cyclic voltammogram on stationary electrode and the limiting current on rotating electrodes. Raman spectroscopy is used to characterize the hydrogen bond network in water and the effect of fructose concentration on such network. Rhenium deposition with different fructose concentrations is studied on rotating disc electrodes. X-ray fluorescence, X-ray diffraction, and four point probe measurements at cryogenic temperature are used to study the deposition rate, crystallographic structure, and superconductivity of film, respectively.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 476
Author(s):  
Pedro P. Socorro-Perdomo ◽  
Néstor R. Florido-Suárez ◽  
Julia C. Mirza-Rosca ◽  
Mircea Vicentiu Saceleanu

The increased popularity of Ti and its alloys as important biomaterials is driven by their low modulus, greater biocompatibility, and better corrosion resistance in comparison to traditional biomaterials, such as stainless steel and Co–Cr alloys. Ti alloys are successfully used in severe stress situations, such as Ti–6Al–4V, but this alloy is related to long-term health problems and, in response, different Ti alloys composed of non-toxic and non-allergic elements such as Nb, Zr, Mo, and Ta have been developed for biomedical applications. In this context, binary alloys of titanium and tantalum have been developed and are predicted to be potential products for medical purposes. More than this, today, novel biocompatible alloys such as high entropy alloys with Ti and Ta are considered for biomedical applications and therefore it is necessary to clarify the influence of tantalum on the behavior of the alloy. In this study, various Ti–xTa alloys (with x = 5, 15, 25, and 30) were characterized using different techniques. High-resolution maps of the materials’ surfaces were generated by scanning tunneling microscopy (STM), and atom distribution maps were obtained by energy dispersive X-ray spectroscopy (EDS). A thorough output of chemical composition, and hence the crystallographic structure of the alloys, was identified by X-ray diffraction (XRD). Additionally, the electrochemical behavior of these Ti–Ta alloys was investigated by EIS in simulated body fluid at different potentials. The passive layer resistance increases with the potential due to the formation of the passive layer of TiO2 and Ta2O5 and then decreases due to the dissolution processes through the passive film. Within the Ti–xTa alloys, Ti–25Ta demonstrates excellent passive layer and corrosion resistance properties, so it seems to be a promising product for metallic medical devices.


2021 ◽  
Vol 12 (4) ◽  
pp. 493-501
Author(s):  
Varun Sharma ◽  
Goutam Brahmachari ◽  
Vivek Kumar Gupta

Herein we report crystallographic comparison of some geometrical and structural features for a series of biologically relevant bis-indole derivatives. Selected bond distances and bond angles of interest in a series of bis-indole derivatives have been discussed in detail. The biological activity of the substances has been correlated with based the structure-activity relationships (SAR) base which provides the different possibility of activity (Pa) and possibility of inactivity (Pi). For a better understanding of the packing interactions existing among these derivatives, an overview of crystal structure analysis with emphasis on the intramolecular hydrogen bonding in some bis-indole derivatives is presented. The role of hydrogen bonding in the crystal structure assembly of bis-indole derivatives has been found to be predominant and this observation reveals significant impact of hydrogen bonding in high value of drug-likeness of these bio-molecules.


2021 ◽  
Vol 23 (1) ◽  
pp. 130
Author(s):  
Audrius Zakšauskas ◽  
Edita Čapkauskaitė ◽  
Vaida Paketurytė-Latvė ◽  
Alexey Smirnov ◽  
Janis Leitans ◽  
...  

Among the twelve catalytically active carbonic anhydrase isozymes present in the human body, the CAIX is highly overexpressed in various solid tumors. The enzyme acidifies the tumor microenvironment enabling invasion and metastatic processes. Therefore, many attempts have been made to design chemical compounds that would exhibit high affinity and selective binding to CAIX over the remaining eleven catalytically active CA isozymes to limit undesired side effects. It has been postulated that such drugs may have anticancer properties and could be used in tumor treatment. Here we have designed a series of compounds, methyl 5-sulfamoyl-benzoates, which bear a primary sulfonamide group, a well-known marker of CA inhibitors, and determined their affinities for all twelve CA isozymes. Variations of substituents on the benzenesulfonamide ring led to compound 4b, which exhibited an extremely high observed binding affinity to CAIX; the Kd was 0.12 nM. The intrinsic dissociation constant, where the binding-linked protonation reactions have been subtracted, reached 0.08 pM. The compound also exhibited more than 100-fold selectivity over the remaining CA isozymes. The X-ray crystallographic structure of compound 3b bound to CAIX showed the structural position, while several structures of compounds bound to other CA isozymes showed structural reasons for compound selectivity towards CAIX. Since this series of compounds possess physicochemical properties suitable for drugs, they may be developed for anticancer therapeutic purposes.


Author(s):  
Brian Fluegel ◽  
Anthony Rice ◽  
Kirstin Alberi

Abstract Low-temperature Raman scattering is used to study the crystal structure of molecular-beam epitaxially grown layers of the Dirac semimetal Cd3As2 and its related alloy (Cd1-xZnx)3As2. The combination of narrow-linewidth spectra, multiple growth directions and full polarization analysis allows improved accuracy in identifying the irreducible representation of over 57 Raman-active vibrations. Several disagreements with previous identifications are found. Structurally, the results agree with the centrosymmetric I41/acd space group of bulk-grown Cd3As2 and are clearly distinct from the Raman spectra of nanoscale platelets and wires. 3-fold twinning is seen in (112) Cd3As2 grown on (111) zincblende substrates corresponding to the three possible tetragonal orientations. In dilute (Cd1-xZnx)3As2, phonons have a frequency and scattering amplitude dependence on Zn concentration that is continuous with Cd3As2 but at least one frequency is absent at the alloy endpoint, preventing a simple one-mode description of the alloy phonon.


Author(s):  
P. Bhuvaneshwari ◽  
P. Vinoba ◽  
N. Prabhu ◽  
M. Vijay Pradhap Singh ◽  
M. Rajamehala ◽  
...  

The present study deals with the green synthesis of silver nanoparticles using seed extract of Linum usitatissimum (Flaxseed) with ethanol as solvent and examined for anticariogenic activity using disc diffusion method along with antioxidant activity using DPPH scavenging studies. The ethanolic seed extract revealed the presence of saponins, tannins, alkaloids, glycosides, counarins, anthocyanins, carbohydrates, leucoanthocyanin and xanthoproteins. Characterization of synthesized AgNPs were confirmed by FTIR to confirm the functional group involved in reduction of Ag+ ions, SEM to know the morphology of synthesized nanoparticles and XRD to study the crystallographic structure of nanoparticles. The antioxidant activity of synthesized AgNPs showed that the maximum inhibition of 88.88% for the seed-AgNPs and compared with the standard ascorbic acid (90.74%) was observed at concentration (100 µg/ml). The anticariogenic activity of synthesized AgNPs using the seed of   Linum usitatissimum showed the maximum zone of inhibition for Streptococcus salivarius with the radius of 12 mm at a higher concentration of 100 µg/ml. Therefore, it is proposed that the synthesized seed-AgNPs played the efficient role against the antioxidant activity and forms the potential source for anticariogenic activity in dental caries application.


2021 ◽  
Vol 14 (12) ◽  
pp. 1296
Author(s):  
Roberto Sabbadini ◽  
Emanuela Pesce ◽  
Alice Parodi ◽  
Eleonora Mustorgi ◽  
Santina Bruzzone ◽  
...  

Cystic fibrosis (CF) is caused by different mutations related to the cystic fibrosis transmembrane regulator protein (CFTR), with F508del being the most common. Pioneering the development of CFTR modulators, thanks to the development of effective correctors or potentiators, more recent studies deeply encouraged the administration of triple combination therapeutics. However, combinations of molecules interacting with other proteins involved in functionality of the CFTR channel recently arose as a promising approach to address a large rescue of F508del-CFTR. In this context, the design of compounds properly targeting the molecular chaperone Hsp70, such as the allosteric inhibitor MKT-077, proved to be effective for the development of indirect CFTR modulators, endowed with ability to amplify the accumulation of the rescued protein. Herein we performed structure-based studies of a number of allosteric HSP70 inhibitors, considering the recent X-ray crystallographic structure of the human enzyme. This allowed us to point out the main interaction supporting the binding mode of MKT-077, as well as of the related analogues. In particular, cation-π and π–π stacking with the conserve residue Tyr175 deeply stabilized inhibitor binding at the HSP70 cavity. Molecular docking studies had been followed by QSAR analysis and then by virtual screening of aminoaryl thiazoles (I–IIIa) as putative HSP70 inhibitors. Their effectiveness as CFTR modulators has been verified by biological assays, in combination with VX-809, whose positive results confirmed the reliability of the whole applied computational method. Along with this, the “in-silico” prediction of absorption, distribution, metabolism, and excretion (ADME) properties highlighted, once more, that AATs may represent a chemical class to be further investigated for the rational design of novel combination of compounds for CF treatment.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1971
Author(s):  
Jiamei Wang ◽  
Xinjie Di ◽  
Chengning Li ◽  
Dongpo Wang

The multi-pass deposited metals were prepared by metal-cored wire with low (2.5 wt%) and high (4.0 wt%) Ni to research the effect of Ni on the bainite/martensite transformation. Results showed that deposited metals exhibited a multiphase structure comprised of bainite, martensite and residual austenite, which is not only explained from SEM/TEM, but also identified and quantified each phase from crystallographic structure through XRD and EBSD. With Ni content increasing, the fraction of martensite increases from 37% to 41%, and that of bainite decreases from 61% to 55% accordingly because 4% Ni element narrows the temperature range of the bainite transformation ~20 °C. The 7.8% residual austenite exhibited block and sheet in the deposited metal with low Ni, while the fraction of residual austenite was 3.26% as a film with high Ni, caused by different transformation mechanisms of bainite and martensite. The tensile strengths of deposited metals were 1042 ± 10 MPa (2.5% Ni) and 1040 ± 5 MPa (4% Ni), respectively. The yield strength of deposited metals with high Ni was 685 ± 18 MPa, which was higher than low Ni due to the high fraction of martensite. The impact values of deposited metals with high Ni content decreased because the volume fraction of bainite and residual austenite and area fraction of large-angle grain boundary were lower.


Sign in / Sign up

Export Citation Format

Share Document