(1R*,5R*,7R*,8S*)-3-(3,4-Dihydroxybenzoyl)-4-hydroxy-8-methyl-1,5,7-tris(3-methyl-2-butenyl)-8-(4-methyl-3-pentenyl)bicyclo[3.3.1]non-3-ene-2,9-dione

2007 ◽  
Vol 63 (3) ◽  
pp. o1282-o1284 ◽  
Author(s):  
Bruno Ndjakou Lenta ◽  
Diderot Tchamo Noungoue ◽  
Krishna Prasad Devkota ◽  
Patrice Aime Fokou ◽  
Silvere Ngouela ◽  
...  

The title compound, C38H50O6, also known as guttiferone A, was isolated from the medicinal plant Symphonia globulifera. It is a benzophenone derivative where one aryl group is derivatized to give a bicyclic system which has two prenyl groups attached to the bridgehead. One of the cyclohexane rings in the bicyclic system is in a chair form, while the other has a distorted half-chair conformation. In addition to an intramolecular O—H...O hydrogen bond, intermolecular O—H...O hydrogen bonds link molecules into one-dimensional chains.

IUCrData ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Yanwen Sun ◽  
Haolei Wu ◽  
Changheng Wei ◽  
Mei Gao ◽  
Zeyi Shen ◽  
...  

In the title compound, C17H16ClN5O3, the phenyl and the oxadiazole rings are almost coplanar, subtending a dihedral angle of 4.34 (19)°. These rings lie almost normal to the pyridazine ring, making dihedral angles of 87.35 (16) and 89.06 (15)°, respectively. The morpholine ring has the usual chair conformation and its mean plane is inclined to the pyridazine ring by 39.45 (17)°. There is a short intramolecular C—H...Cl contact present. In the crystal, molecules are linked by bifurcated C—(H,H)...O hydrogen bonds and a C—H...N hydrogen bond, forming layers parallel to the ab plane.


2015 ◽  
Vol 71 (12) ◽  
pp. o1059-o1060
Author(s):  
Sanae Lahmidi ◽  
Abdelhanine Essaghouani ◽  
El Mokhtar Essassi ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

In the title compound, C12H10Cl2N2O2, the seven-membered heterocycle displays a half-chair conformation. The mean plane through the oxopropylidene group makes a dihedral angle of 36.44 (9)° with the fused benzene ring. An intramolecular N—H...O hydrogen bond to close anS(6) loop is noted. An important feature of the molecular packing are N—H...O hydrogen bonds that lead to the formation of helical supramolecular chains along thebaxis.


2014 ◽  
Vol 70 (6) ◽  
pp. o736-o737
Author(s):  
B. Narayana ◽  
M Sapnakumari ◽  
Balladka K. Sarojini ◽  
Jerry P. Jasinski

In the title compound, C33H24F2N2O2, the cyclohexane ring adopts a slightly distorted chair conformation. The dihedral angle between the planes of the phenyl rings is 71.80 (9)°, while the planes of the fluorophenyl and fluorobenzoyl rings are inclined to one another by 31.04 (10)°. The dihedral angles between the planes of the phenyl ring adjacent to the 4-hydroxy group and those of the the fluorophenyl and fluorobenzoyl rings are 51.64 (10) and 34.31 (10)°, respectively, while the corresponding angles for the phenyl ring adjacent to the 3-(4-fluorobenzoyl) group are 57.51 (9) and 85.02 (10)°, respectively. An intramolecular O—H...O hydrogen bond generates anS(6) ring motif. In the crystal, molecules are linkedviapairs of O—H...N hydrogen bonds, forming inversion dimers. The dimers are linkedviaC—H...N and C—H...O hydrogen bonds, forming chains along thec-axis direction. C—H...F hydrogen bonds link the chains into sheets lying parallel to thebcplane.


2015 ◽  
Vol 71 (5) ◽  
pp. o357-o358
Author(s):  
Zhengyi Li ◽  
Song Shi ◽  
Kun Zhou ◽  
Liang Chen ◽  
Xiaoqiang Sun

The title compound, C17H17NO3, prepared by the condensation reaction of 2-(1,3-dioxan-2-yl)aniline and salicylaldehyde, has anEconformation about the C=N bond. The six-membered O-heterocycle adopts a chair conformation, with the bond to the aromatic ring located at its equatorial position. The dihedral angle between the aromatic rings is 36.54 (9)°. There is an intramolecular N—H...O hydrogen bond forming anS(6) ring motif. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming chains along thea-axis direction. Within the chains, there are C—H...π interactions involving adjacent molecules.


2012 ◽  
Vol 68 (8) ◽  
pp. o2307-o2307
Author(s):  
Sharatha Kumar ◽  
Sabine Foro ◽  
B. Thimme Gowda

In the title compound, C9H8Cl2N2OS, the conformation of one of the N—H bonds isantito the C=S group and the other isantito the C=O group. Further, the conformations of the amide C=S and the C=O group areantito each other. The 2,6-dichlorophenyl ring and the 3-acetylthiourea side chain are inclined to one another at a dihedral angle of 83.44 (5)°. An intramolecular N—H...O hydrogen bond occurs. In the crystal, molecules form inversion dimers through pairs of N—H...S hydrogen bonds.


2007 ◽  
Vol 63 (11) ◽  
pp. o4213-o4213
Author(s):  
Liang-zhong Xu ◽  
Guang-Wei An ◽  
Xu-Dong Yang ◽  
Xu Yi

The title compound, C7H12O3, was synthesized as an intermediate for the synthesis of the selective broad-spectrum nonsystemic acaricide spirodiclofen (trade name Envidor). The cyclohexane ring adopts a chair conformation. The molecules pack in layers, with O—H...O hydrogen bonds connecting the layers on one side and only van der Waals interactions on the other side.


2012 ◽  
Vol 68 (6) ◽  
pp. o1735-o1735
Author(s):  
S. Sundaramoorthy ◽  
N. Sivakumar ◽  
M. Bakthadoss ◽  
D. Velmurugan

The asymmetric unit of the title compound, C19H20N2O3, contains two independent molecules in both of which the pyrrolidine ring adopts an envelope conformation, but with a C atom as the flap in one molecule and the N atom in the other. The pyran ring adopts a half-chair conformation in both molecules. In the crystal, molecules are linked via C—H...O hydrogen bonds and C—H...π interactions.


2015 ◽  
Vol 71 (6) ◽  
pp. o425-o425 ◽  
Author(s):  
Farook Adam ◽  
Nadiah Ameram ◽  
Wai Mun Tan

There are two molecules in the asymmetric unit of the title compound, C9H10N2OS. In one, the dihedral angle between the aromatic ring and the carbamothioyl group is 52.31 (7)° and in the other it is 36.16 (6)°. Each molecule features an intramolecular N—H...O hydrogen bond, which generates anS(6) ring and the O and S atoms have anantidisposition. In the crystal, molecules are linked by N—H...S and N—H...O hydrogen bonds, generating separate [130] and [1-30] infinite chains. Weak C—H...O and C—H...S interactions are also observed.


2016 ◽  
Vol 72 (12) ◽  
pp. 1872-1874
Author(s):  
Dohyun Moon ◽  
Jong-Ha Choi

The structure of the title hybrid compound, (C6H16N2)[CrO4], has been determined from synchrotron data. The organic cation adopts a chair conformation. The inorganic CrO42−anion is slightly distorted owing to its involvement in N—H...O hydrogen-bonding interactions with neighbouringtrans-cyclohexane-1,2-diammonium cations, whereby the two Cr—O bonds to the O atoms acting as acceptor atoms for two hydrogen bonds are slightly longer than the other two Cr—O bonds for which only one acceptor interaction per O atom is observed. In the crystal, cations and anions are packed into layers parallel to (001), held together through the aforementioned N—H...O hydrogen bonds.


IUCrData ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
K. Balakumaran ◽  
J. Mosesbabu ◽  
Jayashree Anireddy ◽  
G. Chakkaravarthi

In the title compound, C19H18N2O3S, the thiazolidine ring makes dihedral angles of 46.97 (8) and 7.19 (9)° with the pyridine and benzene rings, respectively. The intramolecular structure is stabilized by a weak C—H...S hydrogen bond, which generates a S(6) graph-set motif, and a weak C—H...O contact. In the crystal, N—H...N and C—H...O hydrogen bonds leads to infinite one-dimensional chains along (201) and generate an R 2 2(7) ring-set motif. The crystal structure is further consolidated by weak π–π [centroid-to-centroid distance = 3.8204 (10) Å] interactions.


Sign in / Sign up

Export Citation Format

Share Document