Benzimidazolium 2-carboxy-4-hydroxybenzenesulfonate trihydrate

2007 ◽  
Vol 63 (3) ◽  
pp. o1448-o1449 ◽  
Author(s):  
Zi-Liang Wang ◽  
Lin-Heng Wei

The ions and water molecules of the title compound, C7H7N2 +·C7H5O6S−·3H2O, are organized into an infinite two-dimensional network via N—H...O and O—H...O hydrogen bonds parallel to the (100) plane.

2012 ◽  
Vol 68 (8) ◽  
pp. o2456-o2456 ◽  
Author(s):  
Charles D. Swor ◽  
Bryan P. Nell ◽  
Lev N. Zakharov ◽  
David R. Tyler

The title compound, C14H16O4P2·2H2O, possesses a crystallographic inversion center where two –P(=O)(OH)(C6H5) groups are joined togetherviatwo –CH2groups. In the crystal, the acid molecules are linked by the water moleculesviaO—H...O hydrogen bonds, leading to the formation of a two-dimensional network lying parallel to (101).


2014 ◽  
Vol 70 (12) ◽  
pp. o1252-o1252 ◽  
Author(s):  
Rodolfo Moreno-Fuquen ◽  
Diego F. Sánchez ◽  
Javier Ellena

In the title compound, C10H6N4O5S, the mean plane of the non-H atoms of the central amide fragment C—N—C(=O)—C [r.m.s. deviation = 0.0294 Å] forms dihedral angles of 12.48 (7) and 46.66 (9)° with the planes of the thiazole and benzene rings, respectively. In the crystal, molecules are linked by N—H...O hydrogen bonds, forming chains along [001]. In addition, weak C—H...O hydrogen bonds link these chains, forming a two-dimensional network, containingR44(28) ring motifs parallel to (100).


2014 ◽  
Vol 70 (8) ◽  
pp. o875-o876 ◽  
Author(s):  
Naresh Sharma ◽  
Goutam Brahmachari ◽  
Bubun Banerjee ◽  
Rajni Kant ◽  
Vivek K. Gupta

In the title compound, C17H18N4O4, the dihedral angle between the benzene ring and 2,4-dihydropyrano[2,3-c]pyrazole ring system is 89.41 (7)°. The pyran moiety adopts a strongly flattened boat conformation. In the crystal, molecules are linked by N—H...N, N—H...O, C—H...N and C—H...O hydrogen bonds into an infinite two-dimensional network parallel to (110). There are π–π interactions between the pyrazole rings in neighbouring layers [centroid–centroid distance = 3.621 (1) Å].


2013 ◽  
Vol 69 (11) ◽  
pp. o1632-o1632
Author(s):  
Hakima Chicha ◽  
El Mostapha Rakib ◽  
Latifa Bouissane ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

In the title compound, C14H12ClN3O3S, the fused five- and six-membered rings are folded slightly along the common edge, forming a dihedral angle of 3.2 (1)°. The mean plane through the indazole system makes a dihedral angle of 30.75 (7)° with the distant benzene ring. In the crystal, N—H...O hydrogen bonds link the molecules, forming a two-dimensional network parallel to (001).


2014 ◽  
Vol 70 (5) ◽  
pp. o553-o553
Author(s):  
C. N. Sundaresan ◽  
Dheeraj Kumar Singh ◽  
Jagadeesh Babu Nanubolu

In the title compound, C8H9N4S+·Cl−·H2O, the cation is approximately planar, with a dihedral angle of 7.71 (8)° between the mean planes of the benzoimidazole ring system and the thiourea unit. In the crystal, cations, anions and water molecules of crystallization are linked by O—H...Cl, N—H...O, N—H...Cl and N—H...S hydrogen bonds into a three-dimensional network. π–π stacking is observed between the benzene and imidazole rings of neighbouring molecules, the centroid–centroid distance being 3.5774 (11) Å.


2006 ◽  
Vol 62 (4) ◽  
pp. o1281-o1283
Author(s):  
Andreas Fischer

From an aqueous solution of racemic 2,3-dibromosuccinic acid and (R)-1-phenylethanamine, crystals of the title compound, C8H12N+·0.5C4H2Br2O4 2−·0.5C4H4Br2O4·H2O, were obtained in almost quantitative yield. The structure contains both enantiomers of the starting material, dibromosuccinic acid. The S,S enantiomer is present as a dianion and the R,R enantiomer as the neutral acid; both of these components lie on twofold rotation axes. The structure features a complex two-dimensional network of hydrogen bonds.


2006 ◽  
Vol 62 (4) ◽  
pp. o1360-o1361 ◽  
Author(s):  
Zuo-Liang Jing ◽  
Wen-Wen Cheng ◽  
Xin Chen ◽  
Yu Ming

In the crystal structure of the title compound, C15H12N4O·C2H6O, molecules are linked via weak intermolecular N—H...N, O—H...O and N—H...O hydrogen bonds, forming a two-dimensional network.


2013 ◽  
Vol 69 (11) ◽  
pp. 1344-1347 ◽  
Author(s):  
Patricio Cancino ◽  
Evgenia Spodine ◽  
Verónica Paredes-García ◽  
Diego Venegas-Yazigi ◽  
Andrés Vega

In the structure of the title compound, {[Cu2(C10H2O8)(H2O)6]·4H2O}n, the benzene-1,2,4,5-tetracarboxylate ligand, (btec)4−, is located on a crystallographic inversion centre in a μ4-coordination mode. The coordination environment of each pentacoordinated CuIIcentre is square pyramidal (SBP), formed by three water molecules and two carboxylate O atoms from two different (btec)4−ligands. The completely deprotonated (btec)4−ligand coordinates in a monodentate mode to four CuIIatoms. The alternation of (btec)4−ligands and SBP CuIIcentres leads to the formation of a planar two-dimensional covalent network of parallelograms, parallel to theabplane. Hydrogen bonds between a basal water molecule and an apical one from an adjacent [Cu(btec)0.5(H2O)3] unit exist in the intralayer space. Hydrogen bonds are also present between the two-dimensional network and the water molecules filling the channels in the structure.


2012 ◽  
Vol 68 (8) ◽  
pp. o2561-o2561
Author(s):  
Wen-Xiang Wang

The crystal structure of the title compound, C3H4N4O2·H2O, exhibits O—H...O and O—H...N hydrogen bonds, which lead to the formation of a two-dimensional network parallel to thebcplane. The dihedral angle between the ring and the carboxylic acid group is 84.6 (14)°.


2015 ◽  
Vol 71 (7) ◽  
pp. o519-o520
Author(s):  
Joel T. Mague ◽  
Shaaban K. Mohamed ◽  
Mehmet Akkurt ◽  
Sabry H. H. Younes ◽  
Mustafa R. Albayati

In the title compound, C18H17NO4, the dihedral angle between the phenyl ring and the fused six-membered ring is 77.65 (4)°. The conformation of the molecule is determined in part by an intramolecular N—H...O hydrogen bond between the amino H atom and the carbonyl O atom, forming anS(6) motif. In the crystal, molecules are linked into N—H...O hydrogen-bonded inversion dimers which are then connected into chains along [001], forming a two-dimensional network parallel to (100)viaO—H...O hydrogen bonds. C—H...O interactions further contribute to the crystal stability. The ethyl group is disordered over two sets of sites in a 0.801 (5):0.199 (5) ratio.


Sign in / Sign up

Export Citation Format

Share Document