scholarly journals Sr5(VIVOF5)3F(H2O)3refined from a non-merohedrally twinned crystal

2009 ◽  
Vol 65 (6) ◽  
pp. i46-i47 ◽  
Author(s):  
Armel Le Bail ◽  
Anne-Marie Mercier ◽  
Ina Dix

The title compound, pentastrontium tris[pentafluoridooxidovanadate(IV)] fluoride trihydrate, was obtained under hydrothermal conditions. Its crystal structure has been refined from intensity data of a non-merohedrally twinned crystal. Two domains in almost equal proportions are related by a −180° rotation along the reciprocal [101]* vector. The structure may be considered as a derivative of the fluorite structure type, adopted here by SrF2. In the title compound, fluorite-like large rods are recognized, built up from a group of 16 Sr atoms of which 6 are substituted by V atoms, leading to [Sr10V6]∞units. These rods extend infinitely along thebaxis and are interconnected by the three water molecules. Each of the water molecules is shared by two different Sr atoms belonging to two different rods. The rods are also interconnected by an `independent' F atom in a distorted triangular [FSr3] coordination and by hydrogen-bonding interactionsviadonor water molecules. The acceptors are either F atoms or the O atoms of the vanadyl ion, VO2+, that is part of the [VOF5] isolated octahedron.

2006 ◽  
Vol 62 (4) ◽  
pp. m796-m798 ◽  
Author(s):  
Zerrin Heren ◽  
Cem Cüneyt Ersanlı ◽  
Cem Keser ◽  
Nazan Ocak Ískeleli

The crystal structure of the title compound, [Co(C6H4NO2)2(H2O)2]·2H2O, has been reinvestigated with improved precision [previous reports: Chang et al. (1972). J. Coord. Chem. 2, 31–34; Lumme et al. (1969). Suom. Kemistil. B, 42, 270]. In the title compound, the Co atom is located on an inversion center and its coordination can be described as slightly distorted octahedral, equatorially trans-coordinated by two N and O atoms of two picolinate ligands and axially coordinated by two O atoms of the water molecules. Intermolecular O—H...O and C—H...O hydrogen-bonding interactions result in the formation of an intricate three-dimensional network.


2007 ◽  
Vol 63 (3) ◽  
pp. m761-m763 ◽  
Author(s):  
Yan Jiao ◽  
Zhao-Rui Pan ◽  
Zhi-Jie Fang ◽  
Yi-Zhi Li ◽  
He-Gen Zheng

In the crystal structure of the title compound, [Ni(C6H4N2O4S)(H2O)3]·2.5H2O, the NiII atom is six-coordinated by one 2-(6-oxido-4-oxo-3,4-dihydropyimidin-2-ylsulfanyl)acetate ligand and three water molecules. Hydrogen-bonding interactions between the coordinated and uncoordinated water molecules and between the water molecules and the organic ligand result in a three-dimensional network structure.


Author(s):  
Jamal Khmiyas ◽  
Abderrazzak Assani ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

Single crystals of magnesium copper(II) bis[orthophosphate(V)] monohydrate, Mg1.65Cu1.35(PO4)2·H2O, were grown under hydrothermal conditions. The crystal structure is formed by three types of cationic sites and by two unique (PO4)3−anions. One site is occupied by Cu2+, the second site by Mg2+and the third site by a mixture of the two cations with an Mg2+:Cu2+occupancy ratio of 0.657 (3):0.343 (3). The structure is built up from more or less distorted [MgO6] and [(Mg/Cu)O5(H2O)] octahedra, [CuO5] square-pyramids and regular PO4tetrahedra, leading to a framework structure. Within this framework, two types of layers parallel to (-101) can be distinguished. The first layer is formed by [Cu2O8] dimers linked to PO4tetrahedraviacommon edges. The second, more corrugated layer results from the linkage between [(Cu/Mg)2O8(H2O)2] dimers and [MgO6] octahedra by common edges. The PO4units link the two types of layers, leaving space for channels parallel [101], into which the H atoms of the water molecules protrude. The latter are involved in O—H...O hydrogen-bonding interactions (one bifurcated) with framework O atoms across the channels.


Author(s):  
Barry L. Westcott ◽  
Guy Crundwell ◽  
Nilda L. Alicea-Velázquez

The crystal structure of the title compound, [Ni(C13H11N2O2)(H2O)4]Br3·2H2O, contains an octahedral NiII atom coordinated to the enol form of 1,3-dipyridylpropane-1,3-dione (dppo) and four water molecules. Both pyridyl rings on the ligand are protonated, forming pyridinium rings and creating an overall ligand charge of +1. The protonated nitrogen-containing rings are involved in hydrogen-bonding interactions with neighoring bromide anions. There are many additional hydrogen-bonding interactions involving coordinated water molecules on the NiII atom, bromide anions and hydration water molecules.


2015 ◽  
Vol 71 (2) ◽  
pp. 136-139
Author(s):  
Meng Wen ◽  
Zu-Ping Xiao ◽  
Chun-Ya Wang ◽  
Xi-He Huang

The title compound, {[Zn4(C8H4O4)3(OH)2(C12H6N2O2)2]·2H2O}n, has been prepared hydrothermally by the reaction of Zn(NO3)2·6H2O with benzene-1,4-dicarboxylic acid (H2bdc) and 1,10-phenanthroline-5,6-dione (pdon) in H2O. In the crystal structure, a tetranuclear Zn4(OH)2fragment is located on a crystallographic inversion centre which relates two subunits, each containing a [ZnN2O4] octahedron and a [ZnO4] tetrahedron bridged by a μ3-OH group. The pdon ligand chelates to zinc through its two N atoms to form part of the [ZnN2O4] octahedron. The two crystallographically independent bdc2−ligands are fully deprotonated and adopt μ3-κO:κO′:κO′′ and μ4-κO:κO′:κO′′:κO′′′ coordination modes, bridging three or four ZnIIcations, respectively, from two Zn4(OH)2units. The Zn4(OH)2fragment connects six neighbouring tetranuclear units through four μ3-bdc2−and two μ4-bdc2−ligands, forming a three-dimensional framework with uninodal 6-connected α-Po topology, in which the tetranuclear Zn4(OH)2units are considered as 6-connected nodes and the bdc2−ligands act as linkers. The uncoordinated water molecules are located on opposite sides of the Zn4(OH)2unit and are connected to it through hydrogen-bonding interactions involving hydroxide and carboxylate groups. The structure is further stabilized by extensive π–π interactions between the pdon and μ4-bdc2−ligands.


2013 ◽  
Vol 834-836 ◽  
pp. 485-489
Author(s):  
Hai Xing Liu ◽  
Qing Liu ◽  
Quan Hua Fan ◽  
Xiao Ping Zhang ◽  
Lin Tong Wang ◽  
...  

A novel Ni metal complex H26Mo6N2NiO30has been synthesized from hydrothermal reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. H26Mo6N2NiO30, Monoclinic, P2(1)/c. a = 11.3487(14) Å, b = 11.0823(13) Å, c = 11.9350(16) Å. alpha=gamma= 90°. beta= 108.542(2)°. V= 1423.1(3) Å3. It is also striking that the structure of title compound exhibits extensive hydrogen-bonding interactions among water molecules, ammonium cation, and oxygen atoms in the heteropolyanion.


2006 ◽  
Vol 62 (7) ◽  
pp. o2765-o2767
Author(s):  
Hong-Li Wang ◽  
Bin Zhang ◽  
Yi Dai

The title compound, C10H9N3, is essently planar, except for the methyl H atoms. The asymmetric unit consists of two molecules. In the crystal structure, weak intramolecular C—H...N hydrogen-bonding interactions occur, linking the molecules into chains propagating along the a axis.


IUCrData ◽  
2018 ◽  
Vol 3 (8) ◽  
Author(s):  
Antoine Blaise Kama ◽  
Mamadou Sidibe ◽  
Cheikh Abdoul Khadre Diop ◽  
Florent Blanchard

The title compound, [Co(C6H6NO3S)2(H2O)2] n , was obtained from a mixture of Co(NO3)2·6H2O and a previously synthesized salt, namely CyNH3·NH2PhSO3, in a 1:1 ratio (Cy = cyclohexyl; Ph = phenyl). The crystal structure consists of a three-dimensional supramolecular framework, in which polymeric layers are interconnected via N—H...O and O—H...O hydrogen bonding. The polymeric layers are formed by an interconnection of neighbouring cobalt(II) cations via NH2PhSO3 − bridges. Each cobalt(II) cation is surrounded by four NH2PhSO3 − moieties and two water molecules, leading to a distorted octahedral environment.


Author(s):  
Bernhard Eberhard Christian Bugenhagen ◽  
Marc Heinrich Prosenc

The structure of the title compound, [Cu4(CH3O)4(C11H13O2)4], consists of dimeric dinuclear copper(II) complexes oriented around a centre of inversion. Within each dinuclear fragment, the two CuIIatoms are in a distorted square-planar coordination sphere. Two neighbouring fragments are linked by four apical Cu—O contacts, yielding an overall square-pyramidal coordination environment for each of the four CuIIatoms. The molecules are arranged in layers parallel to (101). Non-classical C—H...O hydrogen-bonding interactions are observed between the layers.


2013 ◽  
Vol 69 (11) ◽  
pp. m598-m599
Author(s):  
Sandra Bruda ◽  
Mark M. Turnbull ◽  
Jan L. Wikaira

The title compound, [Cu(C12H8N3O2)(N3)(H2O)], was formed by the air oxidation of 2-(aminomethyl)pyridine in 95% ethanol in the presence of copper(II) nitrate and sodium azide with condensation of the resulting picolinamide molecules to generate the imide moiety. The CuIIion has a square-pyramidal coordination sphere, the basal plane being occupied by four N atoms [two pyridine (py) N atoms, the imide N atom and an azide N atom] in a nearly planar array [mean deviation = 0.048 (6) Å] with the CuIIion displaced slightly from the plane [0.167 (5) Å] toward the fifth ligand. The apical position is occupied by a coordinating water molecule [Cu—O = 2.319 (4) Å]. The crystal structure is stabilized by hydrogen-bonding interactions between the water molecules and carbonyl O atoms. The inversion-related square-pyramidal complex molecules pack base-to-base with long Cu...Npycontact distances of 3.537 (9) Å, preventing coordination of a sixth ligand.


Sign in / Sign up

Export Citation Format

Share Document