metal complex
Recently Published Documents


TOTAL DOCUMENTS

3157
(FIVE YEARS 332)

H-INDEX

88
(FIVE YEARS 13)

2022 ◽  
Vol 23 (2) ◽  
pp. 888
Author(s):  
Żaneta Arciszewska ◽  
Sofia Gama ◽  
Monika Kalinowska ◽  
Grzegorz Świderski ◽  
Renata Świsłocka ◽  
...  

Caffeic acid (CFA) is one of the various natural antioxidants and chemoprotective agents occurring in the human diet. In addition, its metal complexes play fundamental roles in biological systems. Nevertheless, research on the properties of CFA with lanthanide metals is very scarce, and little to no chemical or biological information is known about these particular systems. Most of their properties, including their biological activity and environmental impact, strictly depend on their structure, stability, and solution behaviour. In this work, a multi-analytical-technique approach was used to study these relationships for the Eu(III)/CFA complex. The synthesized metal complex was studied by FT-IR, FT-Raman, elemental, and thermal (TGA) analysis. In order to examine the chemical speciation of the Eu(III)/CFA system in an aqueous solution, several independent potentiometric and spectrophotometric UV-Vis titrations were performed at different M:L (metal:ligand) and pH ratios. The general molecular formula of the synthesized metal complex in the solid state was [Eu(CFA)3(H2O)3]∙2H2O (M:L ratio 1:3), while in aqueous solution the 1:1 species were observed at the optimum pH of 6 ≤ pH ≤ 10, ([Eu(CFA)] and [Eu(CFA)(OH)]−). These results were confirmed by 1H-NMR experiments and electrospray-ionization mass spectrometry (ESI-MS). To evaluate the interaction of Eu(III)/CFA and CFA alone with cell membranes, electrophoretic mobility assays were used. Various antioxidant tests have shown that Eu(III)/CFA exhibits lower antioxidant activity than the free CFA ligand. In addition, the antimicrobial properties of Eu(III)/CFA and CFA against Escherichia coli, Bacillus subtilis and Candida albicans were investigated by evaluation of the minimum inhibitory concentration (MIC). Eu(III)/CFA shows higher antibacterial activity against bacteria compared to CFA, which can be explained by the highly probable increased lipophilicity of the Eu(III) complex.


Author(s):  
Yifei Chen ◽  
Yang Gao ◽  
Lingtao Wang ◽  
Hao Gong

Metal-organic framework which was composed of metal center and organic linkers possessing the similar structure with the homogeneous metal-complex catalyst for hydroformylation, thus it could be potentially used as the...


2022 ◽  
Author(s):  
David Morales-Morales ◽  
Hugo Valdes ◽  
Juan Manuel German-Acacio ◽  
G van Koten

This perspective is to illustrate the synthesis and applications of bimetallic complexes by merging a metallocene and a (cyclopentadienyl/aryl) pincer metal complex. Four possible ways to merge metallocene and pincer-metal...


2022 ◽  
Author(s):  
Shreya Mahato ◽  
Amit Mondal ◽  
Mainak Das ◽  
Mayank Joshi ◽  
Partha Pratim Ray ◽  
...  

The advent of the d-d type of complex salts in designing smart functional materials of versatile utility inspired us to develop a novel type of M(II)-Ce(IV) complex salts [M(II) =...


2021 ◽  
Vol 20 (2) ◽  
pp. 219-225
Author(s):  
Shuchismita Dey ◽  
Md Zakir Sultan ◽  
Md Abdus Salam

Ceftibuten dihydrate is a semisynthetic, orally administered, third generation cephalosporin antibiotic which is effective against most of the pathogens causing infections in the respiratory tract. Complexation of ceftibuten dehydrate (Ligand, L) was performed with hydrated Ni(II) salt (Metal, M) in the ratio of 2:1 (L:M) in aqueous medium at 90 oC. The metal complex was then characterized by spectral techniques and thermal analyses. The FT-IR spectral data of metal complex suggested the monodentate bonding of metal ion to carboxylate group. Spectral evidence also supported the formation of five-membered ring via coordination of metal ion to β-lactam nitrogen and carboxylate group of parent drug. Thermal behavior of ligand and complex were studied. Thus, thermoanalytical (DSC and TGA) results also supported the formation of new metal complex, indicating the successful interaction of metal ion to ligand. Dhaka Univ. J. Pharm. Sci. 20(2): 219-225, 2021 (December)


2021 ◽  
Author(s):  
Lixain Tian ◽  
Aiqing Fan ◽  
Xi Yu ◽  
Wenping Hu

Achieving high rectifying performance of molecular scale diode devices through synthetic chemistry and device construction remain a formidable challenge due to the complexity of the charge transport process and the device structure. We demonstrated here high-performance molecular rectification realized in self-assembled monolayer (SAM) based device by low-cost and fast screening the electroactive units. SAMs of commercial available carboxylate terminated alkane thiols on gold substrate, coordinated with a variety of metal ions, structures denoting as Au-S-(CH2)n-1COO-Mm+ (Cn+Mm+), where n=11, 12, 13, 14, 16, 18 and Mm+=Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, were prepared and junctions were measured using a eutectic indiumgallium alloy top contact (EGaIn). The C18+Ca2+ and C18+Zn2+ junctions were found to afford a record high rectification ratio (RR) of 756 at ±1.5 V. Theoretical analysis based on single level tunneling model shows that optimized combination of the asymmetry voltage division, energy barrier and the coupling of carboxylate-metal complex with electrode. Our method described here represent a general strategy for fast, cheap and effective exploration of the metal complex chemical space for high-performance molecular diodes devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Endale Mulugeta ◽  
Chang-Hee Lee

Benziporphyrin systems are widely explored, yet alternative improved synthetic routes towards these systems are needed. Here, a fairly and efficient synthesis of the free base and its metal complex is well designed. Dimethoxybenzene dicarbinol intermediate was prepared in excellent yields by reacting 4-methoxyphenylmagnesium bromide with isophthaladehyde in diethyl ether. Reaction with equivalent pyrrole and pentafluorobenzaldehyde in the presence of trifluoroacetic acid (TFA), followed by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), provided good yields of bis-(meso-4-methoxyphenyl)-benziporphyrin. Metalation of the free base was performed using palladium(II) acetate salt in acetonitrile. All intermediates and the final products are fully characterized using NMR, HMRS, and UV-Vis spectroscopies and briefly discussed.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 91
Author(s):  
Yung-Yoon Kim ◽  
Kazuya Uezu

The detection and removal of volatile organic compounds (VOCs) are emerging as an important problem in modern society. In this study, we attempted to develop a new material capable of detecting or adsorbing VOCs by introducing a new functional group and immobilizing metal ions into a microfiber nonwoven fabric (MNWF) made through radiation-induced graft polymerization. The suitable metal complex was selected according to the data in “Cambridge Crystallographic Data Center (CCDC)”. 4-picolylamine (4-AMP), designated as a ligand through the metal complex data of CCDC, was introduced at an average mole conversion rate of 63%, and copper ions were immobilized at 0.51 mmol/g to the maximum. It was confirmed that degree of grafting (dg) 170% 4-AMP-Cu MNWF, where copper ions are immobilized, can adsorb up to 50% of acetone gas at about 50 ppm, 0.04 mmol/g- 4-AMP-Cu-MNWF, at room temperature and at a ratio of copper ion to adsorbed acetone of 1:10.


Author(s):  
Тимофей Владимирович Крюков ◽  
Мариана Александровна Феофанова ◽  
Михаил Игоревич Скобин ◽  
Александра Ивановна Иванова

В данной работе коллективом авторов путём взаимодействия водных растворов хлорида трёхвалентного церия и натриевой соли цефазолина получено и выделено в твердом виде металлокомплексное соединение. Его элементный состав установлен с помощью метода рентгеноспектрального электронно-зондового анализа, описаны термические характеристики данного соединения, температура его разложения, состав и способ координации внутренней сферы данного металлокомплекса был уточнен методами термогравиметрии, и дифференциальной сканирующей калориметрии и методом ИК-спектроскопии. На основании полученных данных установлено, что внутренняя сфера металллокомплекса содержит в своем составе три молекулы цефазолина и три молекулы внутрисферной воды. Состав внутренней сферы отвечает брутто-формуле [CeCzl(HO) ]. На основании данных ИК- спектроскопии сделаны выводы о координации цефазолина к центральному иону через амидную и карбоксильную группы. In this work, a team of authors obtained and isolated in solid form a metal complex compound by the interaction of aqueous solutions of trivalent cerium chloride and sodium salt of cefazolin. Its elemental composition was determined using the X-ray spectral electron probe analysis. The thermal characteristics of this compound, the temperature of its decomposition, the composition and the method of coordination of the inner sphere of this metal complex were clarified by the methods of thermogravimetry, differential scanning calorimetry and IR spectroscopy. Based on the data obtained, the inner sphere of the metal complex contains three molecules of cefazolin and three molecules of inner-sphere water. The composition of the inner sphere corresponds to the formula [CeCzl(HO) ]. Taking into account IR spectroscopy data, the authors concluded that the most likely way of coordination of cefazolin to the central ion is through the amide and carboxyl groups.


Sign in / Sign up

Export Citation Format

Share Document