scholarly journals 3-Ethyl-6-(4-fluorophenyl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine

2012 ◽  
Vol 68 (6) ◽  
pp. o1860-o1860
Author(s):  
S. Jeyaseelan ◽  
H. C. Devarajegowda ◽  
R. Sathishkumar ◽  
Agnes Sylvia D'souza ◽  
Alphonsus D'souza

In the title compound, C12H11FN4S, the thiadiazine ring adopts a twist-boat conformation. The dihedral angle between the triazolothiadiazine system and the benzene ring is 10.54 (9)°. The crystal structure is characterized by C—H...N hydrogen bonds. The crystal packing also exhibits π–π interactions, with a centroid–centroid distance of 3.6348 (15) Å.

2015 ◽  
Vol 71 (11) ◽  
pp. o862-o863 ◽  
Author(s):  
Mohamed Ellouz ◽  
Nada Kheira Sebbar ◽  
El Mokhtar Essassi ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

In the title compound, C16H13NOS, the 1,4-thiazine ring displays a screw-boat conformation. The conformation about the ethene bond [1.344 (2) Å] isZ. The plane of the fused benzene ring makes a dihedral angle of 58.95 (9)° with the pendent phenyl ring, indicating a twisted conformation in the molecule. In the crystal, molecules are linked by pairs of C—H...O hydrogen bonds, forming inversion dimers.


2007 ◽  
Vol 63 (3) ◽  
pp. o1495-o1496
Author(s):  
Hosein Ghorbani ◽  
Ayoob Bazgir

In the molecule of the title compound, C18H12FNO2, the oxazine ring is not planar and has a flattened boat conformation The dihedral angle between the benzene ring and the naphthalene system is 78.4 (3)°. In the crystal structure, intermolecular N—H...O hydrogen bonds link the molecules into dimers, which may be effective in the stabilization of the structure.


2012 ◽  
Vol 68 (6) ◽  
pp. o1857-o1857 ◽  
Author(s):  
Xi-Wang Liu ◽  
Jian-Yong Li ◽  
Han Zhang ◽  
Ya-Jun Yang ◽  
Ji-Yu Zhang

The title compound, C10H5ClF2N2OS, was obtained by linking an amino heterocycle and a substituted benzoyl chloride. The dihedral angle between the two rings is 41.2 (2)° and the equalization of the amide C—N bond lengths reveals the existence of conjugation between the benzene ring and the thiazole unit. In the crystal, pairs of N—H...N hydrogen bonds link molecules into inversion dimers. Non-classical C—H...F and C—H...O hydrogen bonds stabilize the crystal structure.


2012 ◽  
Vol 68 (6) ◽  
pp. o1816-o1816
Author(s):  
Ji-Lai Liu ◽  
Ming-Hui Sun ◽  
Jing-Jun Ma

The title compound, C15H14N2O2, was obtained from the reaction of 3-hydroxybenzaldhyde and 4-methylbenzohydrazide in methanol. In the molecule, the benzene rings form a dihedral angle of 2.9 (3)°. In the crystal, N—H...O and O—H...O hydrogen bonds link the molecules into layers parallel to (101). The crystal packing also exhibits π–π interactions between the aromatic rings [centroid–centroid distance = 3.686 (4) Å].


2014 ◽  
Vol 70 (8) ◽  
pp. o875-o876 ◽  
Author(s):  
Naresh Sharma ◽  
Goutam Brahmachari ◽  
Bubun Banerjee ◽  
Rajni Kant ◽  
Vivek K. Gupta

In the title compound, C17H18N4O4, the dihedral angle between the benzene ring and 2,4-dihydropyrano[2,3-c]pyrazole ring system is 89.41 (7)°. The pyran moiety adopts a strongly flattened boat conformation. In the crystal, molecules are linked by N—H...N, N—H...O, C—H...N and C—H...O hydrogen bonds into an infinite two-dimensional network parallel to (110). There are π–π interactions between the pyrazole rings in neighbouring layers [centroid–centroid distance = 3.621 (1) Å].


2006 ◽  
Vol 62 (4) ◽  
pp. o1419-o1420 ◽  
Author(s):  
M. Khawar Rauf ◽  
Amin Badshah ◽  
Ulrich Flörke ◽  
Aamer Saeed

In the crystal structure of the title compound, C14H11ClN2OS, the dihedral angle between the two aromatic ring planes is 43.93 (6)°. The crystal packing shows dimers formed by intermolecular N—H...S hydrogen bonds which are stacked along [100].


2014 ◽  
Vol 70 (10) ◽  
pp. o1114-o1115
Author(s):  
Seonghwa Cho ◽  
Jineun Kim ◽  
Gihaeng Kang ◽  
Tae Ho Kim

The title compound, C10H13Cl2FN2O2S2{systematic name:N-[(dichlorofluoromethyl)sulfanyl]-N′,N′-dimethyl-N-p-tolylsulfamide}, is a well known fungicide. The dihedral angle between the mean plane of the dimethylamino group and that of the benzene ring is 32.3 (3)°. One Cl atom and one F atom of the dichlorofluoromethylthio group are disordered over two sets of sites with an occupancy ratio of 0.605 (9):0.395 (9). In the crystal structure, two C—H...Cl hydrogen bonds link adjacent molecules, forming dimers withR22(14) loops. C—H...O hydrogen bonds link pairs of dimers into chains along theb-axis direction. These chains are joined by an additional C—H...O contact, generating a sheet in theabplane.


2012 ◽  
Vol 68 (6) ◽  
pp. o1884-o1884 ◽  
Author(s):  
Ísmail Çelik ◽  
Mehmet Akkurt ◽  
Makbule Yilmaz ◽  
Ahmet Tutar ◽  
Ramazan Erenler ◽  
...  

In the title compound, C11H10Br2O2, the cyclopentene ring fused to the benzene ring adopts an envelope conformation, with the C atom attached to the Br atom as the flap. The crystal structure does not exhibit any classical hydrogen bonds. The molecular packing is stabilized by van der Waals forces and π–π stacking interactions with a centroid–centroid distance of 3.811 (4) Å.


2014 ◽  
Vol 70 (2) ◽  
pp. o112-o113
Author(s):  
N. R. Sajitha ◽  
M. Sithambaresan ◽  
M. R. Prathapachandra Kurup

The molecule of the title compound, C16H17N3O2S, adopts anEconformation with respect to the azomethine C=N bond. The hydrazinecarbothioamide fragment is close to planar, with a largest deviation from the least-squares plane of 0.079 (2) Å for the hydrazide N atom. This fragment forms a dihedral angle of 9.43 (9)° with the central benzene ring. The benzene rings are inclined to one another by 67.55 (12)°. The molecular conformation is stabilized by an intramolecular O—H...N hydrogen bond involving the azomethine N atom. In the crystal, molecules are linked through weak N—H...S and N—H...O hydrogen bonds into double ribbons along [010]. The crystal packing also features C—H...π interactions.


2012 ◽  
Vol 68 (4) ◽  
pp. o1084-o1084
Author(s):  
D. Kannan ◽  
M. Bakthadoss ◽  
R. Madhanraj ◽  
S. Murugavel

In the title compound, C25H22N2O3S, the sulfonyl-bound benzene ring forms dihedral angles of 36.8 (2) and 81.4 (2)°, respectively, with the formylbenzene and methylbenzene rings. The molecular conformation is stabilized by an intramolecular C—H...O hydrogen bond, which generates anS(5) ring motif. The crystal packing is stabilized by C—H...O hydrogen bonds, which generateC(11) chains along thebaxis. The crystal packing is further stabilized by π–π interactions [centroid–centroid distance = 3.927 (2) Å].


Sign in / Sign up

Export Citation Format

Share Document