Novel study on the electron density distribution projection maps calculated via the discrete cosine transform

2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Hideo Hiraguchi

It is already known that a curve estimated via the discrete cosine transform (DCT) always passes through all the measured points without using imaginary numbers in the DCT coefficients, unlike the discrete Fourier transform. Moreover, owing to its character, the DCT can be used instead of the nonlinear least-squares method to express various theoretical curves. Because the DCT is a kind of Fourier transform, there is a possibility that the DCT could be employed to draw electron density distribution maps of crystals. If so, the probability that the DCT could be used to investigate the internal structure of materials by analysing the theoretical curves would increase. This article reports an attempt to draw the electron density distribution maps of the Mg3BN3 low-pressure phase [Mg3BN3(L)] by using the DCT in order to confirm the utility of the DCT for analysing the internal structure of materials. It is found that the DCT can provide mirror-symmetric electron density distribution projection maps and a modified DCT can be used to calculate whole standard electron density distribution projection maps for the surface plane of the unit cell. Moreover, a real crystal structure that has a centre of symmetry can be determined by the DCT by transforming a 1/4 part of the mirror-symmetric electron density distribution projection map.

1991 ◽  
Vol 35 (A) ◽  
pp. 77-83 ◽  
Author(s):  
Makoto Sakata ◽  
Masaki Takata ◽  
Yoshiki Kubota ◽  
Tatsuya Uno ◽  
Shintaro Kuhazawa ◽  
...  

AbstractThe electron density distribution maps for CaF2 and TiO2 (rutile) were obtained from profile fitting of powder diffraction data by a Maximum Entropy Method (MEM) analysis. The resultant electron density maps show clearly the nature of the chemical bonding. In order to interpret the results, the nuclear density distribution was also obtained for rutile from powder neutron diffraction data. In the electron density map for rutile obtained by HEM analysis from the X-ray data, both apical and equatorial bonding can be seen. On the other hand, the nuclear density of rutile Is very simple and shows the thermal vibration of nuclei.


Author(s):  
H.-J. Cantow ◽  
H. Hillebrecht ◽  
S. Magonov ◽  
H. W. Rotter ◽  
G. Thiele

From X-ray analysis, the conclusions are drawn from averaged molecular informations. Thus, limitations are caused when analyzing systems whose symmetry is reduced due to interatomic interactions. In contrast, scanning tunneling microscopy (STM) directly images atomic scale surface electron density distribution, with a resolution up to fractions of Angstrom units. The crucial point is the correlation between the electron density distribution and the localization of individual atoms, which is reasonable in many cases. Thus, the use of STM images for crystal structure determination may be permitted. We tried to apply RuCl3 - a layered material with semiconductive properties - for such STM studies. From the X-ray analysis it has been assumed that α-form of this compound crystallizes in the monoclinic space group C2/m (AICI3 type). The chlorine atoms form an almost undistorted cubic closed package while Ru occupies 2/3 of the octahedral holes in every second layer building up a plane hexagon net (graphite net). Idealizing the arrangement of the chlorines a hexagonal symmetry would be expected. X-ray structure determination of isotypic compounds e.g. IrBr3 leads only to averaged positions of the metal atoms as there exist extended stacking faults of the metal layers.


2006 ◽  
Vol 47 (3) ◽  
pp. 558-562 ◽  
Author(s):  
L. N. Mazalov ◽  
S. V. Trubina ◽  
G. K. Parygina ◽  
I. M. Oglezneva ◽  
E. A. Aseeva ◽  
...  

1963 ◽  
Vol 18 (8-9) ◽  
pp. 895-900
Author(s):  
Franz Peter Küpper

In a θ-pinch the radial symmetry of the electron density distribution as a function of time has been measured by a MACH—ZEHNDER interferometer. In a time interval of 400 nsec during a discharge an image converter made three pictures (exposure times of 10 nsec each) . Up to 100 nsec after the first compression, the experimental results show different density distributions for the cases of trapped parallel and antiparallel magnetic fields. Complete radial symmetry of the electron density distribution was not found.Another interferometric method for measuring the radial symmetry of the electron distribution by observing “zero order” fringes is described.


Sign in / Sign up

Export Citation Format

Share Document