High-accuracy measurement of mass attenuation coefficients and the imaginary component of the atomic form factor of zinc from 8.51 keV to 11.59 keV, and X-ray absorption fine structure with investigation of zinc theory and nanostructure

2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Ruwini S. K. Ekanayake ◽  
Christopher T. Chantler ◽  
Daniel Sier ◽  
Martin J. Schalken ◽  
Alexis J. Illig ◽  
...  

High-accuracy X-ray mass attenuation coefficients were measured from the first X-ray Extended Range Technique (XERT)-like experiment at the Australian Synchrotron. Experimentally measured mass attenuation coefficients deviate by ∼50% from the theoretical values near the zinc absorption edge, suggesting that improvements in theoretical tabulations of mass attenuation coefficients are required to bring them into better agreement with experiment. Using these values the imaginary component of the atomic form factor of zinc was determined for all the measured photon energies. The zinc K-edge jump ratio and jump factor are determined and results raise significant questions regarding the definitions of quantities used and best practice for background subtraction prior to X-ray absorption fine-structure (XAFS) analysis. The XAFS analysis shows excellent agreement between the measured and tabulated values and yields bond lengths and nanostructure of zinc with uncertainties of from 0.1% to 0.3% or 0.003 Å to 0.008 Å. Significant variation from the reported crystal structure was observed, suggesting local dynamic motion of the standard crystal lattice. XAFS is sensitive to dynamic correlated motion and in principle is capable of observing local dynamic motion beyond the reach of conventional crystallography. These results for the zinc absorption coefficient, XAFS and structure are the most accurate structural refinements of zinc at room temperature.

2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Ruwini S. K. Ekanayake ◽  
Christopher T. Chantler ◽  
Daniel Sier ◽  
Martin J. Schalken ◽  
Alexis J. Illig ◽  
...  

The first X-ray Extended Range Technique (XERT)-like experiment at the Australian Synchrotron, Australia, is presented. In this experiment X-ray mass attenuation coefficients are measured across an energy range including the zinc K-absorption edge and X-ray absorption fine structure (XAFS). These high-accuracy measurements are recorded at 496 energies from 8.51 keV to 11.59 keV. The XERT protocol dictates that systematic errors due to dark current nonlinearities, correction for blank measurements, full-foil mapping to characterize the absolute value of attenuation, scattering, harmonics and roughness are measured over an extended range of experimental parameter space. This results in data for better analysis, culminating in measurement of mass attenuation coefficients across the zinc K-edge to 0.023–0.036% accuracy. Dark current corrections are energy- and structure-dependent and the magnitude of correction reached 57% for thicker samples but was still large and significant for thin samples. Blank measurements scaled thin foil attenuation coefficients by 60–500%; and up to 90% even for thicker foils. Full-foil mapping and characterization corrected discrepancies between foils of up to 20%, rendering the possibility of absolute measurements of attenuation. Fluorescence scattering was also a major correction. Harmonics, roughness and bandwidth were explored. The energy was calibrated using standard reference foils. These results represent the most extensive and accurate measurements of zinc which enable investigations of discrepancies between current theory and experiments. This work was almost fully automated from this first experiment at the Australian Synchrotron, greatly increasing the possibility for large-scale studies using XERT.


2010 ◽  
Vol 81 (2) ◽  
Author(s):  
Nicholas A. Rae ◽  
Christopher T. Chantler ◽  
Zwi Barnea ◽  
Martin D. de Jonge ◽  
Chanh Q. Tran ◽  
...  

2020 ◽  
Vol 27 (5) ◽  
pp. 1262-1277
Author(s):  
Daniel Sier ◽  
Geoffrey P. Cousland ◽  
Ryan M. Trevorah ◽  
Ruwini S. K. Ekanayake ◽  
Chanh Q. Tran ◽  
...  

Measurements of mass attenuation coefficients and X-ray absorption fine structure (XAFS) of zinc selenide (ZnSe) are reported to accuracies typically better than 0.13%. The high accuracy of the results presented here is due to our successful implementation of the X-ray extended range technique, a relatively new methodology, which can be set up on most synchrotron X-ray beamlines. 561 attenuation coefficients were recorded in the energy range 6.8–15 keV with measurements concentrated at the zinc and selenium pre-edge, near-edge and fine-structure absorption edge regions. This accuracy yielded detailed nanostructural analysis of room-temperature ZnSe with full uncertainty propagation. Bond lengths, accurate to 0.003 Å to 0.009 Å, or 0.1% to 0.3%, are plausible and physical. Small variation from a crystalline structure suggests local dynamic motion beyond that of a standard crystal lattice, noting that XAFS is sensitive to dynamic correlated motion. The results obtained in this work are the most accurate to date with comparisons with theoretically determined values of the attenuation showing discrepancies from literature theory of up to 4%, motivating further investigation into the origin of such discrepancies.


2017 ◽  
Vol 95 (5) ◽  
pp. 427-431
Author(s):  
Erhan Cengiz

The LIII subshell photoelectric cross section, jump ratio, jump factor, and Davisson–Kirchner ratio of iridium have been determined by mass attenuation coefficients. The measurements have been performed using the X-ray attenuation method in narrow beam geometry. The obtained results have been compared with the tabulated values of XCOM (Berger et al. XCOM: Photon cross section database (version 1.3). NIST. Available at http://physics.nist.gov/xcom . 2005) and FFAST (Chantler et al. X-ray form factor, attenuation and scattering tables (version 2.1). NIST. Available at http://physics.nist.gov/ffast . 2005).


Sign in / Sign up

Export Citation Format

Share Document