Determination of LIII subshell photoelectric parameters of iridium

2017 ◽  
Vol 95 (5) ◽  
pp. 427-431
Author(s):  
Erhan Cengiz

The LIII subshell photoelectric cross section, jump ratio, jump factor, and Davisson–Kirchner ratio of iridium have been determined by mass attenuation coefficients. The measurements have been performed using the X-ray attenuation method in narrow beam geometry. The obtained results have been compared with the tabulated values of XCOM (Berger et al. XCOM: Photon cross section database (version 1.3). NIST. Available at http://physics.nist.gov/xcom . 2005) and FFAST (Chantler et al. X-ray form factor, attenuation and scattering tables (version 2.1). NIST. Available at http://physics.nist.gov/ffast . 2005).

2013 ◽  
Vol 91 (3) ◽  
pp. 221-225 ◽  
Author(s):  
B. Saritha ◽  
A.S. Nageswara Rao

Transmission experiments were performed on wood in a narrow-beam geometry using a collimated gamma ray beam at 59.5 and 661.6 keV. The mass attenuation coefficients were determined from experiment, and effective atomic numbers were computed from theoretical equations. It was found that the mass attenuation coefficient decreases with increasing photon energy. Experimental values were compared with those from the XCOM database and with analytical results, and good agreement was achieved. This type of study gives some insight about photon interactions with wood materials.


2010 ◽  
Vol 81 (2) ◽  
Author(s):  
Nicholas A. Rae ◽  
Christopher T. Chantler ◽  
Zwi Barnea ◽  
Martin D. de Jonge ◽  
Chanh Q. Tran ◽  
...  

2020 ◽  
Vol 26 (2) ◽  
pp. 194-203
Author(s):  
Philipp Pöml ◽  
Xavier Llovet

AbstractMass attenuation coefficients (MACs) of Th, U, Np, and Pu for oxygen X-rays have been experimentally determined using an electron microprobe. The MACs were obtained by measuring relative X-ray intensities emitted from ThO2, UO2, NpO2, and PuO2 targets, for incident electron energies from 5 to 30 keV, and processing them with the help of the computer program XMAC. The accuracy of the measured MACs is estimated to be better than 5%. Results are compared with MAC tabulations commonly used in electron probe microanalysis as well as with theoretical photoionization calculations. It is concluded that the MACs implemented in the Monte Carlo simulation program PENELOPE which are based on the photoionization cross-section calculations of Sabbatucci & Salvat [(2016). Theory and calculation of the atomic photoeffect. Rad Phys Chem121, 122–140], provide the best agreement with our measurements. The use of different MAC schemes for the analysis of mixed actinide oxide materials is discussed.


Sign in / Sign up

Export Citation Format

Share Document