A new three-dimensional CdIIsupramolecular framework constructed from the 1-[(1H-tetrazol-5-yl)methyl]-1,4-diazoniabicyclo[2.2.2]octane ligand

2015 ◽  
Vol 71 (2) ◽  
pp. 93-96 ◽  
Author(s):  
Qiang Li ◽  
Hui-Ting Wang ◽  
Lin Zhou

A new tetrazole–metal supramolecular compound, di-μ-chlorido-bis(trichlorido{1-[(1H-tetrazol-5-yl-κN2)methyl]-1,4-diazoniabicyclo[2.2.2]octane}cadmium(II)), [Cd2(C8H16N6)2Cl8], has been synthesized and structurally characterized by single-crystal X-ray diffraction. In the structure, each CdIIcation is coordinated by five Cl atoms (two bridging and three terminal) and by one N atom from the 1-[(1H-tetrazol-5-yl)methyl]-1,4-diazoniabicyclo[2.2.2]octane ligand, adopting a slightly distorted octahedral coordination geometry. The bridging bicyclo[2.2.2]octane and chloride ligands link the CdIIcations into one-dimensional ribbon-like N—H...Cl hydrogen-bonded chains along thebaxis. An extensive hydrogen-bonding network formed by N—H...Cl and C—H...Cl hydrogen bonds, and interchain π–π stacking interactions between adjacent tetrazole rings, consolidate the crystal packing, linking the poymeric chains into a three-dimensional supramolecular network.

Author(s):  
Mwaffak Rukiah ◽  
Thaer Assaad

The title two-dimensional coordination polymer, [Na(C2H8NO6P2)]n, was characterized using powder X-ray diffraction data and its structure refined using the Rietveld method. The asymmetric unit contains one Na+cation and one (1-azaniumylethane-1,1-diyl)bis(hydrogen phosphonate) anion. The central Na+cation exhibits distorted octahedral coordination geometry involving two deprotonated O atoms, two hydroxy O atoms and two double-bonded O atoms of the bisphosphonate anion. Pairs of sodium-centred octahedra share edges and the pairs are in turn connected to each other by the biphosphonate anion to form a two-dimensional network parallel to the (001) plane. The polymeric layers are connected by strong O—H...O hydrogen bonding between the hydroxy group and one of the free O atoms of the bisphosphonate anion to generate a three-dimensional network. Further stabilization of the crystal structure is achived by N—H...O and O—H...O hydrogen bonding.<!?tpb=18.7pt>


2013 ◽  
Vol 69 (11) ◽  
pp. 1332-1335 ◽  
Author(s):  
Xiu-Hua Zhao ◽  
Ya-Yun Zhao ◽  
Jie Zhang ◽  
Jian-Guo Pan ◽  
Xing Li

catena-Poly[[[4-amino-N-(quinoxalin-2-yl)benzenesulfonamidato]aquacadmium(II)]-μ-4-amino-N-(quinoxalin-2-yl)benzenesulfonamidato], [Cd(C14H11N4O2S)2(H2O)], has been synthesized hydrothermally and characterized by single-crystal X-ray diffraction, elemental analysis, fluorescence, IR and thermal analysis. Single-crystal X-ray analysis reveals that the complex is a one-dimensional zigzag chain structure, and the CdIIcation has a distorted octahedral coordination geometry formed by five N atoms from three different sulfaquinoxaline ligands and one O atom from a water molecule. The fluorescence spectrum reveals that the complex emits strong blue fluorescence and thermal analysis shows that the complex has high thermal stability.


2007 ◽  
Vol 62 (2) ◽  
pp. 195-199 ◽  
Author(s):  
Dongmei Shi ◽  
Haijun Pang ◽  
Fanxia Meng ◽  
Yu Sun ◽  
Kun Liu ◽  
...  

A new organic/inorganic salt formed by mixed-valence dibenzotetrathiafulvalene (DBTTF) radical cations and the spherical Keggin-type polyoxometalate anions [H3BW12O40]2− was obtained by electrochemical oxidation of the donor in an acetonitrile and a 1,2-dichloroethane solution containing the polyanion. The compound has been characterized by X-ray diffraction, elemental analysis, EPR, IR and Raman spectroscopy. X-Ray diffraction experiments have revealed that the compound consists of heteropolyanions, water molecules and DBTTF radical cations. The organic radicals form trimers and dimers via π-π stacking; moreover, the polyoxoanions and the organic donors are also held together by hydrogen bonding interactions. In their packing arrangement, a three-dimensional supramolecular network with one-dimensional channels along the b axis is established with uncoordinated water molecules residing in the channels.


2013 ◽  
Vol 68 (2) ◽  
pp. 138-146 ◽  
Author(s):  
Hong-Yan Lin ◽  
Peng Liu ◽  
Xiu-Li Wang ◽  
Chuang Xu ◽  
Guo-Cheng Liu

Two new copper(II) complexes, [Cu2(3-bpfp)(2,6-PDA)2(H2O)2] (1) and [Cu(4-bpfp)0:5 (glu)]·H2O (2), have been hydrothermally synthesized by self-assembly of isomeric bis(pyridylformyl)piperazine ligands [3-bpfp=bis(3-pyridylformyl)piperazine, 4-bpfp=bis(4- pyridylformyl)piperazine], rigid pyridine-2,6-dicarboxylic acid (2,6-H2PDA) or flexible glutaric acid (H2glu), and copper(II) chloride. Single-crystal X-ray diffraction analysis reveals that two adjacent CuII ions are connected by the 3-bpfp ligand to build a dinuclear unit in complex 1, in which 2,6-PDA serves as a terminal chelating ligand. Adjacent dinuclear units are further linked by hydrogen bonding and π-π stacking interactions to form a three-dimensional (3D) supramolecular network. Complex 2 is a 3D coordination polymeric framework based on a layer polymer [Cu(glu)]n and bridging 4-bpfp ligands with 6-connected (44.610.8) topology. In 1 and 2, the ligands 3-bpfp and 4-bpfp adopt a μ2-bridging coordination mode (via ligation of pyridyl nitrogen atoms). The thermal stability and the electrochemical properties of the title complexes have been studied.


1980 ◽  
Vol 58 (10) ◽  
pp. 1042-1045 ◽  
Author(s):  
R. L. Parkes ◽  
N. C. Payne ◽  
E. O. Sherman

An air-stable, red, crystalline, N-bonded acetonitrile complex of Os(III), OsCl3(NCCH3)(P(C6H5)3)2, has been prepared and characterized by elemental analysis, magnetic susceptibility, and a single crystal X-ray structure determination. Crystals are monoclinic, space group P21/c, cell dimensions a = 10.029(2), b = 15.233(2), c = 25.246(4) Å, β = 113.65(1)°, and Z = 4. Three dimensional X-ray diffraction intensity data were collected on an automatic four circle diffractometer using Cu radiation. Full-matrix least-squares refinement on F converged at R = 0.038 for 4384 unique observations. The Os atom has a slightly distorted octahedral coordination geometry, with trans phosphine ligands, mean Os—P 2.406(2) Å. The acetonitrile ligand is σ-bonded through the N atom, Os—N 2.038(6) Å. The bond trans to the acetonitrile ligand. Os—Cl(1) 2.364(2) Å, is not significantly different from the mean of the cisOs—Cl bonds, 2.361(2) Å.


2017 ◽  
Vol 73 (10) ◽  
pp. 1402-1404 ◽  
Author(s):  
Fuhong Liu ◽  
Yan Ding ◽  
Qiuyu Li ◽  
Liping Zhang

The title compound, poly[bis{μ2-4,4′-bis[(1,2,4-triazol-1-yl)methyl]biphenyl-κ2N4:N4′}bis(nitrato-κO)zinc(II)], [Zn(NO3)2(C18H16N6)2]n, is a two-dimensional zinc coordination polymer constructed from 4,4′-bis[(1H-1,2,4-triazol-1-yl)methyl]-1,1′-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The ZnIIcation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4′-bis[(1H-1,2,4-triazol-1-yl)methyl]-1,1′-biphenyl ligands, forming a distorted octahedral {ZnN4O2} coordination geometry. The linear 4,4′-bis[(1H-1,2,4-triazol-1-yl)methyl]-1,1′-biphenyl ligand links two ZnIIcations, generating two-dimensional layers parallel to the crystallographic (132) plane. The parallel layers are connected by C—H...O, C—H...N, C—H...π and π–π stacking interactions, resulting in a three-dimensional supramolecular architecture.


Author(s):  
Dohyun Moon ◽  
Jong-Ha Choi

The structure of the title compound, [Cr(tacn)2]2[ZnCl4]3·H2O (tacn is 1,4,7-triazacyclononane; C6H15N3), has been determined from synchrotron X-ray data. Each CrIII cation is coordinated by the six N atoms from the two tacn ligands, displaying a distorted octahedral geometry. Three distorted tetrahedral [ZnCl4]2− anions and one lattice water molecule lie outside this coordination sphere. The Cr—N bond lengths are in the range 2.0621 (11) to 2.0851 (12) Å, while the mean inner N—Cr—N bond angle is 82.51 (5)°. The crystal packing is stabilized by hydrogen-bonding interactions with the N—H groups of the tacn ligands and the water O—H groups acting as donors, and the O atoms of the water molecules and Cl atoms of the [ZnCl4]2− anions as acceptors. Overall these contacts lead to the formation of a three-dimensional network.


2019 ◽  
Vol 75 (10) ◽  
pp. 1344-1352
Author(s):  
Yu-Kun Lu ◽  
Ya-Ping Li ◽  
Ling-Yu Yang ◽  
Wen-Hong Wang ◽  
Yuan Pan ◽  
...  

A novel modified polyoxometalate, {PMo12O40[Cu(2,2′-bpy)]}[Cu(2,2′-bpy)(en)(H2O)]2 [2,2′-bpy is 2,2′-bipyridyl (C10H8N2) and en is ethylenediamine (C2H8N2)], has been synthesized hydrothermally and structurally characterized by elemental analysis, TG, IR, XPS and single-crystal X-ray diffraction. The structural analysis reveals that the compound contains the reduced Keggin polyanion [PMo12O40]6− as the parent unit, which is monocapped by [Cu(2,2′-bpy)]2+ fragments via four bridging O atoms on an {Mo4O4} pit and bi-supported by two [Cu(2,2′-bpy)(en)(H2O)]2+ coordination cations simultaneously. There exist strong intramolecular π–π stacking between the capping and supporting units, which play a stabilizing role during the crystallization of the compound. Adjacent POM clusters are further aggregated to form a three-dimensional supramolecular network through noncovalent forces, hydrogen bonding and π–π stacking interactions. In addition, the photocatalytic properties were investigated in detail, and the results indicated that the compound can be used as a photocatalyst towards the decomposition of the organic pollutant methylene blue (MB).


2006 ◽  
Vol 61 (5) ◽  
pp. 555-559 ◽  
Author(s):  
Veysel T. Yilmaz ◽  
Vecdi Kars ◽  
Canan Kazak

The new cadmium and mercury saccharinate (sac) complexes, cis-[Cd(sac)2(dmea)2] (1) and [Hg(sac)2(dmea)(H2O)] (2) (dmea = 2-dimethylaminoethanol), have been prepared and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. In complex 1, the cadmium(II) ion is coordinated by two neutral dmea ligands and two sac anions in a distorted octahedral CdN3O3 coordination geometry. The dmea ligand acts as a bidentate N, O chelate, while the sac ligands behave as an ambidentate ligands. One of them coordinates to the cadmium(II) ion through the carbonyl oxygen atom, while the other is N-bonded. In complex 2, the mercury(II) ion is coordinated by an aqua ligand, a chelating dmea ligand and two N-bonded sac ligands, forming a distorted trigonal bipyramidal coordination HgN3O2. The molecules interact with each other through O-H···O hydrogen bonds and aromatic π(sac)···π(sac) stacking interactions, leading to a three-dimensional supramolecular network.


2015 ◽  
Vol 71 (8) ◽  
pp. 679-682 ◽  
Author(s):  
Yu-Quan Feng ◽  
Yu-Long Hu ◽  
Hong-Wei Wang ◽  
Feng-Pu Cao

A new linear bismuth(III) coordination polymer,catena-poly[[chloridobismuth(III)]-μ3-1,10-phenanthroline-2,9-dicarboxylato-κ6O2:O2,N1,N10,O9:O9], [Bi(C14H6N2O4)Cl]n, has been obtained by an ionothermal method and characterized by elemental analysis, energy-dispersive X-ray spectroscopy, IR spectroscopy, thermal stability studies and single-crystal X-ray diffraction. The structure is constructed by Bi(C14H6N2O4)Cl fragments in which each BiIIIcentre is seven-coordinated by one Cl atom, four O atoms and two N atoms. The coordination geometry of the BiIIIcation is distorted pentagonal–bipyramidal (BiO4N2Cl), with one bridging carboxylate O atom and one Cl atom located in the axial positions. The Bi(C14H6N2O4)Cl fragments are further extended into a one-dimensional linear polymeric structureviasubsequent but different centres of symmetry (bridging carboxylate O atoms). Neighbouring linear chains are assembledviaweak C—H...O and C—H...Cl hydrogen bonds, forming a three-dimensional supramolecular architecture. Intermolecular π–π stacking interactions are observed, with centroid-to-centroid distances of 3.678 (4) Å, which further stabilize the structure. In addition, the solid-state fluorescence properties of the title coordination polymer were investigated.


Sign in / Sign up

Export Citation Format

Share Document