Syntheses, Structures and Electrochemical Properties of Two New Copper(II) Complexes Based on Isomeric Bis(pyridylformyl)piperazine Ligands and Rigid=Flexible Organic Dicarboxylates

2013 ◽  
Vol 68 (2) ◽  
pp. 138-146 ◽  
Author(s):  
Hong-Yan Lin ◽  
Peng Liu ◽  
Xiu-Li Wang ◽  
Chuang Xu ◽  
Guo-Cheng Liu

Two new copper(II) complexes, [Cu2(3-bpfp)(2,6-PDA)2(H2O)2] (1) and [Cu(4-bpfp)0:5 (glu)]·H2O (2), have been hydrothermally synthesized by self-assembly of isomeric bis(pyridylformyl)piperazine ligands [3-bpfp=bis(3-pyridylformyl)piperazine, 4-bpfp=bis(4- pyridylformyl)piperazine], rigid pyridine-2,6-dicarboxylic acid (2,6-H2PDA) or flexible glutaric acid (H2glu), and copper(II) chloride. Single-crystal X-ray diffraction analysis reveals that two adjacent CuII ions are connected by the 3-bpfp ligand to build a dinuclear unit in complex 1, in which 2,6-PDA serves as a terminal chelating ligand. Adjacent dinuclear units are further linked by hydrogen bonding and π-π stacking interactions to form a three-dimensional (3D) supramolecular network. Complex 2 is a 3D coordination polymeric framework based on a layer polymer [Cu(glu)]n and bridging 4-bpfp ligands with 6-connected (44.610.8) topology. In 1 and 2, the ligands 3-bpfp and 4-bpfp adopt a μ2-bridging coordination mode (via ligation of pyridyl nitrogen atoms). The thermal stability and the electrochemical properties of the title complexes have been studied.

2012 ◽  
Vol 67 (8) ◽  
pp. 791-798 ◽  
Author(s):  
Jian-Chen Geng ◽  
Cui-Huan Jiao ◽  
Jin-Ming Hao ◽  
Guang-Hua Cui

Three flexible α,ѡ-bis(5,6-dimethylbenzimidazolyl)alkane ligands with different spacers were reacted with CdX2 (X = Cl, Br, I) hydrothermally, resulting in three coordination architectures, namely [CdI2(L1)]n (1), [CdBr2(L2)]n (2), and Cd2Cl4(L3)2 (3) [L1 = 1,3-bis(5,6- dimethylbenzimidazole)propane, L2 = 1,5-bis(5,6-dimethylbenzimidazole)pentane, L3 = 1,6- bis(5,6-dimethylbenzimidazole)hexane]. They have been characterized by elemental analyses, IR spectra, thermogravimetric (TG) analysis, and single-crystal X-ray diffraction. Complex 1displays a helical chain linked by the ligands L1, and a 2D supramolecular network is constructed through π-π stacking interactions; complex 2shows a helical chain structure with connections through two kinds of strong π-π stacking interactions into an intricate 3D supramolecular network; complex 3 contains dinuclear metallomacrocycles. The fluorescence properties of 1-3have been investigated in the solid state


2015 ◽  
Vol 71 (2) ◽  
pp. 93-96 ◽  
Author(s):  
Qiang Li ◽  
Hui-Ting Wang ◽  
Lin Zhou

A new tetrazole–metal supramolecular compound, di-μ-chlorido-bis(trichlorido{1-[(1H-tetrazol-5-yl-κN2)methyl]-1,4-diazoniabicyclo[2.2.2]octane}cadmium(II)), [Cd2(C8H16N6)2Cl8], has been synthesized and structurally characterized by single-crystal X-ray diffraction. In the structure, each CdIIcation is coordinated by five Cl atoms (two bridging and three terminal) and by one N atom from the 1-[(1H-tetrazol-5-yl)methyl]-1,4-diazoniabicyclo[2.2.2]octane ligand, adopting a slightly distorted octahedral coordination geometry. The bridging bicyclo[2.2.2]octane and chloride ligands link the CdIIcations into one-dimensional ribbon-like N—H...Cl hydrogen-bonded chains along thebaxis. An extensive hydrogen-bonding network formed by N—H...Cl and C—H...Cl hydrogen bonds, and interchain π–π stacking interactions between adjacent tetrazole rings, consolidate the crystal packing, linking the poymeric chains into a three-dimensional supramolecular network.


2012 ◽  
Vol 67 (11) ◽  
pp. 1191-1196 ◽  
Author(s):  
Chong-Zhen Mei ◽  
Kai-Hui Li ◽  
Hai-Hua Li

Self-assembly of silver(I) cations, flexible 2,2ʹ-oxydibenzoate anions (L2-), and 1,2-bis(4- pyridyl)ethane (bpa) ligands affords a new three-dimensional supramolecular architecture, {[Ag2(L)(bpa)2]⋅(H2O)4}n (1), which has been characterized by elemental analysis, IR, TGA, PXRD, and single-crystal X-ray diffraction. Complex 1exhibits layers further connected through hydrogen bonding and π...π stacking interactions. Its photoluminescence was also investigated.


2019 ◽  
Vol 75 (10) ◽  
pp. 1344-1352
Author(s):  
Yu-Kun Lu ◽  
Ya-Ping Li ◽  
Ling-Yu Yang ◽  
Wen-Hong Wang ◽  
Yuan Pan ◽  
...  

A novel modified polyoxometalate, {PMo12O40[Cu(2,2′-bpy)]}[Cu(2,2′-bpy)(en)(H2O)]2 [2,2′-bpy is 2,2′-bipyridyl (C10H8N2) and en is ethylenediamine (C2H8N2)], has been synthesized hydrothermally and structurally characterized by elemental analysis, TG, IR, XPS and single-crystal X-ray diffraction. The structural analysis reveals that the compound contains the reduced Keggin polyanion [PMo12O40]6− as the parent unit, which is monocapped by [Cu(2,2′-bpy)]2+ fragments via four bridging O atoms on an {Mo4O4} pit and bi-supported by two [Cu(2,2′-bpy)(en)(H2O)]2+ coordination cations simultaneously. There exist strong intramolecular π–π stacking between the capping and supporting units, which play a stabilizing role during the crystallization of the compound. Adjacent POM clusters are further aggregated to form a three-dimensional supramolecular network through noncovalent forces, hydrogen bonding and π–π stacking interactions. In addition, the photocatalytic properties were investigated in detail, and the results indicated that the compound can be used as a photocatalyst towards the decomposition of the organic pollutant methylene blue (MB).


2006 ◽  
Vol 59 (9) ◽  
pp. 647 ◽  
Author(s):  
Yong-Tao Wang ◽  
Gui-Mei Tang ◽  
Da-Wei Qin

Three new inorganic–organic coordination polymers based on a versatile linking unit 2-(1H-imidazole-1-yl)acetate (Hima) and divalent Mn(ii), Ni(ii), and Cu(ii) ions, exhibiting two kinds of two dimensionalities with different topological structures, have been prepared in water medium and structurally characterized by single-crystal X-ray diffraction analysis. Reaction of MnCl2·4H2O and Ni(NO3)2·6H2O with Hima yielded neutral two-dimensional (2D) coordination polymers [M(ima)2]n, M = Mn(ii) 1, and Ni(ii) 2 with isostructural 2D coordination polymers possessing (3,6) topology structures, which further stack into three-dimensional (3D) supramolecular networks through C–H···O weak interactions. However, when Cu(NO3)2·4H2O was used, a neutral 2D coordination polymer [Cu(ima)2]n 3 consisting of rhombus units was generated, which showed a 3D supramolecular network through C–H···O weak interactions. Among these polymers, the building block ima anion exhibits different coordination modes. These results indicate that the versatile nature of this flexible ligand, together with the coordination preferences of the metal ions, plays a critical role in construction of these novel coordination polymers. Spectral and thermal properties of these new materials have also been investigated.


Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 424 ◽  
Author(s):  
Jia-Le Li ◽  
Wei-Dong Li ◽  
Zi-Wei He ◽  
Shuai-Shuai Han ◽  
Shui-Sheng Chen

A new compound, namely, [Zn(L)2]n (1) was obtained by the reaction of 2-methyl-4-(4H-1,2,4-triazol-4-yl) benzoic acid (HL) with ZnSO4·7H2O, and the compound was characterized by single-crystal X-ray diffraction, infrared spectroscopy, elemental analysis, powder X-ray diffraction (PXRD), and thermogravimetric analysis. The linear HL ligands were deprotonated to be L− anions and act as two-connectors to link Zn2+ to form a two-dimensional (2D) lay structure with (4, 4) topology. The large vacancy of 2D framework allows another layer structure to interpenetrate, resulting in the formation of 2D + 2D → 2D parallel interpenetration in 1. The weak interactions, such as hydrogen bonding and π–π stacking interactions, connect the adjacent 2D layers into a three-dimensional (3D) coordination polymer. The solid-state UV-visible spectroscopy and luminescent property have also been studied.


2015 ◽  
Vol 70 (9) ◽  
pp. 631-636 ◽  
Author(s):  
Huaixian Liu ◽  
Lin Sun ◽  
Huiliang Zhou ◽  
Peipei Cen ◽  
Xiaoyong Jin ◽  
...  

AbstractStarting with 1H-3-phenyl-5-(pyridin-2-yl)-1,2,4-triazole (1-Hppt), a Co(III) complex, [Co(ppt)3] (1), has been synthesized by reaction with CoF3 under hydrothermal conditions and characterized by its infrared spectrum and elemental analysis. The structure was determined by single-crystal and powder X-ray diffraction. Density functional theory (DFT) was employed to determine the optimized geometry and preferred conformation of the free ligand. A supramolecular network is formed via π–π stacking interactions. The conformation and geometry of the ligands correspond with the calculated results.


2018 ◽  
Vol 74 (8) ◽  
pp. 889-893
Author(s):  
Qian-Kun Zhou ◽  
Lin Wang ◽  
Dong Liu

As a class of multifunctional materials, crystalline supramolecular complexes have attracted much attention because of their unique architectures, intriguing topologies and potential applications. In this article, a new supramolecular compound, namely catena-poly[4,4′-(buta-1,3-diene-1,4-diyl)dipyridin-1-ium [(μ4-benzene-1,2,4,5-tetracarboxylato-κ6 O 1,O 1′:O 2:O 4,O 4′:O 5)cadmium(II)]], {(C14H14N2)[Cd(C10H2O8)]} n or {(1,4-H2bpbd)[Cd(1,2,4,5-btc)]} n , has been prepared by the self-assembly of Cd(NO3)2·4H2O, benzene-1,2,4,5-tetracarboxylic acid (1,2,4,5-H4btc) and 1,4-bis(pyridin-4-yl)buta-1,3-diene (1,4-bpbd) under hydrothermal conditions. The title compound has been structurally characterized by IR spectroscopy, elemental analysis, powder X-ray diffraction and single-crystal X-ray diffraction analysis. Each CdII centre is coordinated by six O atoms from four different (1,2,4,5-btc)4− tetraanions. Each CdII cation, located on a site of twofold symmetry, binds to four carboxylate groups belonging to four separate (1,2,4,5-btc)4− ligands. Each (1,2,4,5-btc)4− anion, situated on a position of \overline{1} symmetry, binds to four crystallographically equivalent CdII centres. Neighbouring CdII cations interconnect bridging (1,2,4,5-btc)4− anions to form a three-dimensional {[Cd(1,2,4,5-btc)]2−} n anionic coordination network with infinite tubular channels. The channels are visible in both the [1\overline{1}0] and the [001] direction. Such a coordination network can be simplified as a (4,4)-connected framework with the point symbol (4284)(4284). To balance the negative charge of the metal–carboxylate coordination network, the cavities of the network are occupied by protonated (1,4-H2bpbd)2+ cations that are located on sites of twofold symmetry. In the crystal, there are strong hydrogen-bonding interactions between the anionic coordination network and the (1,4-H2bpbd)2+ cations. Considering the hydrogen-bonding interactions, the structure can be further regarded as a three-dimensional (4,6)-connected supramolecular architecture with the point symbol (4264)(42687·84). The thermal stability and photoluminescence properties of the title compound have been investigated.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 126 ◽  
Author(s):  
Pei-Chi Cheng ◽  
Bing-Han Li ◽  
Feng-Shuen Tseng ◽  
Po-Ching Liang ◽  
Chia-Her Lin ◽  
...  

Four lithium coordination polymers, [Li3(BTC)(H2O)6] (1), [Li3(BTC)(H2O)5] (2), [Li3(BTC)(μ2-H2O)] (3), and [Li(H2BTC)(H2O)] (4) (H3BTC = 1,3,5-benzenetricarboxylatic acid), have been synthesized and characterized. All the structures have been determined using single crystal X-ray diffraction studies. Complexes 1 and 2 have two-dimensional (2-D) sheets, whereas complex 3 has three-dimensional (3-D) frameworks and complex 4 has one-dimensional (1-D) tubular chains. The crystal-to-crystal transformation was observed in 1–3 upon removal of water molecules, which accompanied the changes in structures and ligand bridging modes. Furthermore, the electrochemical properties of complexes 3 and 4 have been studied to evaluate these compounds as electrode materials in lithium ion batteries with the discharge capacities of 120 and 257 mAhg−1 in the first thirty cycles, respectively.


2020 ◽  
Vol 76 (11) ◽  
pp. 1024-1033
Author(s):  
Fang-Hua Zhao ◽  
Shi-Yao Li ◽  
Wen-Yu Guo ◽  
Zi-Hao Zhao ◽  
Xiao-Wen Guo ◽  
...  

Two new CdII MOFs, namely, two-dimensional (2D) poly[[[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ2-heptanedioato)cadmium(II)] tetrahydrate], {[Cd(C7H10O4)(C18H18N4)]·4H2O} n or {[Cd(Pim)(bbimb)]·4H2O} n (1), and 2D poly[diaqua[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ4-decanedioato)(μ2-decanedioato)dicadmium(II)], [Cd2(C10H16O4)2(C18H18N4)(H2O)2] n or [Cd(Seb)(bbimb)0.5(H2O)] n (2), have been synthesized hydrothermally based on the 1,4-bis(1H-benzimidazol-1-yl)butane (bbimb) and pimelate (Pim2−, heptanedioate) or sebacate (Seb2−, decanedioate) ligands. Both MOFs were structurally characterized by single-crystal X-ray diffraction. In 1, the CdII centres are connected by bbimb and Pim2− ligands to generate a 2D sql layer structure with an octameric (H2O)8 water cluster. The 2D layers are further connected by O—H...O hydrogen bonds, resulting in a three-dimensional (3D) supramolecular structure. In 2, the CdII centres are coordinated by Seb2− ligands to form binuclear Cd2 units which are linked by bbimb and Seb2− ligands into a 2D hxl layer. The 2D layers are further connected by O—H...O hydrogen bonds, leading to an 8-connected 3D hex supramolecular network. IR and UV–Vis spectroscopy, thermogravimetric analysis and solid-state photoluminescence analysis were carried out on both MOFs. Luminescence sensing experiments reveal that both MOFs have good selective sensing towards Fe3+ in aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document