Synthesis and characterization of a photochromic magnesium(II) coordination polymer based on a naphthalene diimide ligand

2017 ◽  
Vol 73 (6) ◽  
pp. 437-441
Author(s):  
Jian-Jun Liu ◽  
Teng Liu ◽  
Chang-Cang Huang

Naphthalene diimides, which are planar, chemically robust and redox-active, are an attractive class of electron-deficient dyes, which can undergo a single reversible one-electron reduction to form stable radical anions in the presence of electron donors upon irradiation. This makes them excellent candidates for organic linkers in the construction of photochromic coordination polymers. Such a photochromic one-dimensional linear coordination polymer has been prepared using N,N′-bis(3-carboxyphenyl)naphthalene-1,8:4,5-tetracarboximide (H2BBNDI). Crystallization of H2BBNDI with magnesium nitrate in an N,N′-dimethylformamide (DMF)/ethanol/H2O mixed-solvent system under solvothermal conditions afforded the one-dimensional coordination polymer catena-poly[[bis(dimethylformamide-κO)magnesium(II)]-bis[μ-N-(3-carboxylatophenyl)-N′-(3-carboxylphenyl)naphthalene-1,8:4,5-tetracarboximide-κ2 O:O′]], [Mg(C28H13N2O8)2(C3H7NO)2] n . The asymmetric unit contains half of a magnesium cation, one HBBNDI− ligand and one DMF molecule. Two partially deprotonated HBBNDI− ligands bridge two magnesium cations to form a one-dimensional chain. Strong inter-chain π–π interactions between the naphthalene rings of the HBBNDI− ligand and the imide rings of adjacent chains provide a two-dimensional structure. The supramolecular three-dimensional framework is stabilized by π–π interactions between naphthalene rings of neighbouring two-dimensional supramolecular networks. The complex exhibits a reversible photochromic behaviour, which may originate from the photoinduced electron-transfer generation of radicals in the HBBNDI− ligand.

2014 ◽  
Vol 70 (8) ◽  
pp. m298-m299
Author(s):  
Elumalai Govindhan ◽  
A. S. Ganeshraja ◽  
B. Bhavana ◽  
Krishnamoorthy Anbalagan ◽  
Arunachalam SubbiahPandi

The title compound, {[Zn(C3H3N2)(C3H4N2)2]NO3}n, is a one-dimensional coordination polymer along [01-1] with the ZnIIatom coordinating to four imidazole/imidazolide rings. The ZnIIatom has a regular tetrahedral geometry with the planes of the two monodentate imidazole rings inclined to one another by 87.94 (17)°, while the planes of the bridging imidazolide rings are inclined to one another by 39.06 (17)°. In the crystal, the chains are linkedviabifurcated N—H...(O,O) hydrogen bonds, forming sheets parallel to (001). These two-dimensional networks are linkedviaC—H...O hydrogen bonds and a C—H...π interaction, forming a three-dimensional structure.


2014 ◽  
Vol 70 (5) ◽  
pp. 517-521
Author(s):  
Yu-Xiu Jin ◽  
Fang Yang ◽  
Li-Min Yuan ◽  
Chao-Guo Yan ◽  
Wen-Long Liu

In poly[[μ3-2,2′-(disulfanediyl)dibenzoato-κ5 O:O,O′:O′′,O′′′](1,10-phenanthroline-κ2 N,N′)cadmium(II)], [Cd(C14H8O4S2)(C12H8N2)] n , the asymmetric unit contains one CdII cation, one 2,2′-(disulfanediyl)dibenzoate anion (denoted dtdb2−) and one 1,10-phenanthroline ligand (denoted phen). Each CdII centre is seven-coordinated by five O atoms of bridging/chelating carboxylate groups from three dtdb2− ligands and by two N atoms from one phen ligand, forming a distorted pentagonal–bipyramidal geometry. The CdII cations are bridged by dtdb2− anions to give a two-dimensional (4,4) layer. The layers are stacked to generate a three-dimensional supramolecular architecture via a combination of aromatic C—H...π and π–π interactions. The thermogravimetric and luminescence properties of this compound were also investigated.


2009 ◽  
Vol 65 (3) ◽  
pp. m118-m120
Author(s):  
Olha Sereda ◽  
Helen Stoeckli-Evans

The title coordination polymer, [Cd3Co2(CN)12(C2H8N2)4]n, has an infinite two-dimensional network structure. The asymmetric unit is composed of two crystallographically independent CdIIatoms, one of which is located on a twofold rotation axis. There are two independent ethylenediamine (en) ligands, one of which bis-chelates to the Cd atom that sits in a general position, while the other bridges this Cd atom to that sitting on the twofold axis. The Cd atom located on the twofold rotation axis is linked to four equivalent CoIIIatomsviacyanide bridges, while the Cd atom that sits in a general position is connected to three equivalent CoIIIatomsviacyanide bridges. In this way, a series of trinuclear, tetranuclear and pentanuclear macrocycles are linked to form a two-dimensional network structure lying parallel to thebcplane. In the crystal structure, these two-dimensional networks are linkedviaN—H...N hydrogen bonds involving an en NH2H atom and a cyanide N atom, leading to the formation of a three-dimensional structure. This coordination polymer is only the second example involving a cyanometallate where the en ligand is present in both chelating and bridging coordination modes.


2018 ◽  
Vol 74 (5) ◽  
pp. 599-603 ◽  
Author(s):  
Yan-Ju Liu ◽  
Di Cheng ◽  
Ya-Xue Li ◽  
Xiang-Ru Meng ◽  
Huai-Xia Yang

In recent years, N-heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N-atom donors, as well as O-atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two-dimensional coordination polymer, namely poly[[μ3-2,2′-(1,2-phenylene)bis(4-carboxy-1H-imidazole-5-carboxylato)-κ6 O 4,N 3,N 3′,O 4′:O 5:O 5′]manganese(II)], [Mn(C16H8N4O8)] n or [Mn(H4Phbidc)] n , has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′-(1,2-phenylene)bis(1H-imidazole-4,5-dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six-coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two-dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H...O hydrogen bonds, forming a three-dimensional structure in the solid state.


Author(s):  
Jin-Long ◽  
Kazuhiro Uemura ◽  
Masahiro Ebihara

Eight new structures of dirhodium complexes, each with four biimidazole (H2bim) ligands, were obtained: [Rh2(H2bim)4(H2O)2](NO3)4·4H2O (I), [Rh2(H2bim)4(H2O)2](ClO4)4·5H2O (II), [Rh2(H2bim)4(MeOH)2](ClO4)4(III), [Rh2(H2bim)4(DMF)2](BF4)4(IV), [Rh2(H2bim)4(Mepy)2](SiF6)2·8H2O (V), [{Rh2(H2bim)4(pz)}2(μ-pz)](SiF6)(ClO4)6·12.7H2O (VI), [{Rh2(H2bim)4(pz)}2(μ-pz)](ClO4)8·11.4H2O (VII) and [Rh2(H2bim)4(μ-pz)](SiF6)2·6H2O (VIII). The unbridged Rh—Rh bond distances range between 2.6313 (8) and 2.7052 (5) Å. The dirhodium units adopt a staggered conformation with torsion angles N—Rh—Rh—N of 37.6 (4)–48.98 (8)°. Various assembled structures were constructed by hydrogen bonding between the complexes and the anions: a discrete structure in (IV), one-dimensional structure in (II), two-dimensional structures in (I), (III), (VI), (VII) and (VIII) and a three-dimensional structure in (V).


2000 ◽  
pp. 717-718 ◽  
Author(s):  
Lei Zhang ◽  
Peng Cheng ◽  
Liang-Fu Tang ◽  
Zong-Hui Jiang ◽  
Dai-Zheng Liao ◽  
...  

2013 ◽  
Vol 69 (12) ◽  
pp. 1472-1477 ◽  
Author(s):  
Graham Smith

The structures of the hydrated sodium salts of 4-chloro-3-nitrobenzoic acid {poly[aqua(μ4-4-chloro-3-nitrobenzoato)sodium(I)], [Na(C7H3ClNO4)(H2O)]n, (I)} and 2-amino-4-nitrobenzoic acid {poly[μ-aqua-aqua(μ3-2-amino-4-nitrobenzoato)sodium(I)], [Na(C7H5N2O4)(H2O)2]n, (II)}, and the hydrated potassium salt of 2-amino-4-nitrobenzoic acid {poly[μ-aqua-aqua(μ5-2-amino-4-nitrobenzoato)potassium(I)], [K(C7H5N2O4)(H2O)]n, (III)} have been determined and their complex polymeric structures described. All three structures are stabilized by intra- and intermolecular hydrogen bonding and strong π–π ring interactions. In the structure of (I), the distorted trigonal bipyrimidal NaO5coordination polyhedron comprises a monodentate water molecule and four bridging carboxylate O-atom donors, generating a two-dimensional polymeric structure lying parallel to (001). Intra-layer hydrogen-bonding associations and strong inter-ring π–π interactions are present. Structure (II) has a distorted octahedral NaO6stereochemistry, with four bridging O-atom donors, two from a single carboxylate group and two from a single nitro group and three from the two water molecules, one of which is bridging. Na centres are linked through centrosymmetric four-membered duplex water bridges and through 18-membered duplex head-to-tail ligand bridges. Similar centrosymmetric bridges are found in the structure of (III), and in both (II) and (III) strong inter-ring π–π interactions are found. A two-dimensional layered structure lying parallel to (010) is generated in (II), whereas in (III) the structure is three-dimensional. With (III), the irregular KO7coordination polyhedron comprises a doubly bridging water molecule, a single bidentate bridging carboxylate O-atom donor and three bridging O-atom donors from the two nitro groups. A three-dimensional structure is generated. These coordination polymer structures are among the few examples of metal complexes of any type with either 4-chloro-3-nitrobenzoic acid or 4-nitroanthranilic acid.


Author(s):  
Magdalena Wilk ◽  
Jan Janczak ◽  
Veneta Videnova-Adrabinska

The rigid organic ligand (pyridine-3,5-diyl)diphosphonic acid has been used to create the title novel three-dimensional coordination polymer, [Ca(C5H6NO6P2)2(H2O)]n. The six-coordinate calcium ion is in a distorted octahedral environment, formed by five phosphonate O atoms from five different (pyridin-1-ium-3,5-diyl)diphosphonate ligands, two of which are unique, and one water O atom. Two crystallographically independent acid monoanions,L1 andL2, serve to link metal centres using two different coordination modes,viz.η2μ2and η3μ3, respectively. The latter ligand,L2, forms a strongly undulated two-dimensional framework parallel to the crystallographicbcplane, whereas the former ligand,L1, is utilized in the formation of one-dimensional helical chains in the [010] direction. The two sublattices ofL1 andL2 interweave at the Ca2+ions to form a three-dimensional framework. In addition, multiple O—H...O and N—H...O hydrogen bonds stabilize the three-dimensional coordination network. Topologically, the three-dimensional framework can be simplified as a very unusual (2,3,5)-connected three-nodal net represented by the Schläfli symbol (4·82)(4·88·10)(8).


2019 ◽  
Vol 75 (10) ◽  
pp. 1432-1435
Author(s):  
Yukiyasu Kashiwagi ◽  
Koji Kubono ◽  
Toshiyuki Tamai

The reaction of bis(3-oxo-1,3-diphenylprop-1-enolato-κ2 O,O′)zinc(II), [Zn(dbm)2], with tris[4-(pyridin-3-yl)phenyl]amine (T3PyA) in tetrahydrofuran (THF) afforded the title crystalline coordination polymer, {[Zn(C15H11O2)2(C33H24N4)]·C4H8O} n . The asymmetric unit contains two independent halves of Zn(dbm)2, one T3PyA and one THF. Each ZnII atom is located on an inversion centre and adopts an elongated octahedral coordination geometry, ligated by four O atoms of two dbm ligands in equatorial positions and by two N atoms of pyridine moieties from two different bridging T3PyA ligands in axial positions. The crystal packing shows a one-dimensional polymer chain in which the two pyridyl groups of the T3PyA ligand bridge two independent Zn atoms of Zn(dbm)2. In the crystal, the coordination polymer chains are linked via C—H...π interactions into a sheet structure parallel to (010). The sheets are cross-linked via further C—H...π interactions into a three-dimensional network. The solvate THF molecule shows disorder over two sets of atomic sites having occupancies of 0.631 (7) and 0.369 (7).


Author(s):  
Shuai Yuan ◽  
Shan-Shan Liu ◽  
Hai-Feng Lu ◽  
Meng-Zhen Xu ◽  
Di Sun

A novel two-dimensional coordination polymer, poly[[μ2-1,3-bis(2-methyl-1H-imidazol-1-yl)propane]di-μ4-iodido-di-μ3-iodido-silver(I)], [Ag4I4(C11H16N4)]n, (I), has been synthesized by solvothermal reaction of AgNO3, KI and 1,3-bis(2-methyl-1H-imidazol-1-yl)propane (bmimp). In (I), the two unique AgIcations have AgNI3and AgI4four-coordinated tetrahedral geometries. The bmimp ligand has imposed twofold symmetry. The AgIcations and iodide anions form a unique one-dimensional polymeric column motif incorporating [Ag6I6] hexagonal prisms, which are then connected by bmimp ligands to form two-dimensional organic–inorganic layers. The layers are arranged in parallel in anABABfashion and are packed into the resultant three-dimensional supramolecular framework by van der Waals interactions.


Sign in / Sign up

Export Citation Format

Share Document