scholarly journals Crystal structure ofcis-bis(μ-β-alanine-κ2O:O′)bis[trichloridorhenium(III)](Re–Re) sesquihydrate

Author(s):  
Alexander A. Golichenko ◽  
Konstantin V. Domasevitch ◽  
Dina E. Kytova ◽  
Alexander V. Shtemenko

The structure of the title compound, [Re2Cl6(C3H7NO2)2]·1.5H2O, comprises a dinuclear complex cation [Re—Re = 2.2494 (3) Å] involvingcis-oriented double carboxylate bridges, four equatorial chloride ions and two weakly bonded chloride ligands in the axial positions at the two rhenium(III) atoms. In the crystal, two complex molecules and two water molecules constitute hydrogen-bonded dimers, while an extensive hydrogen-bonding network involving the groups of the zwitterionic ligand is important for generation of the framework. An additional partially occupied water molecule is disordered over two sets of sites about a symmetry centre with a site-occupancy ratio of 0.3:0.2.

2013 ◽  
Vol 69 (11) ◽  
pp. m598-m599
Author(s):  
Sandra Bruda ◽  
Mark M. Turnbull ◽  
Jan L. Wikaira

The title compound, [Cu(C12H8N3O2)(N3)(H2O)], was formed by the air oxidation of 2-(aminomethyl)pyridine in 95% ethanol in the presence of copper(II) nitrate and sodium azide with condensation of the resulting picolinamide molecules to generate the imide moiety. The CuIIion has a square-pyramidal coordination sphere, the basal plane being occupied by four N atoms [two pyridine (py) N atoms, the imide N atom and an azide N atom] in a nearly planar array [mean deviation = 0.048 (6) Å] with the CuIIion displaced slightly from the plane [0.167 (5) Å] toward the fifth ligand. The apical position is occupied by a coordinating water molecule [Cu—O = 2.319 (4) Å]. The crystal structure is stabilized by hydrogen-bonding interactions between the water molecules and carbonyl O atoms. The inversion-related square-pyramidal complex molecules pack base-to-base with long Cu...Npycontact distances of 3.537 (9) Å, preventing coordination of a sixth ligand.


2007 ◽  
Vol 63 (11) ◽  
pp. m2657-m2658 ◽  
Author(s):  
Yu-Lin Lo ◽  
Wen-Chieh Wang ◽  
Gon-Ann Lee ◽  
Yen-Hsiang Liu

The title compound, [Co2(C9H4N2O4)2(H2O)8]·5H2O, contains two CoII ions that are bridged by two 1H-benzimidazole-5,6-dicarboxylate ligands to form an M 2 L 2 type complex (M = metal and L = ligand). There are two crystallographically distinct M 2 L 2 units, each on an inversion centre, along with coordinated and uncoordinated water molecules, in the asymmetric unit. The CoII ions are octahedral. Extensive hydrogen bonding exists between the complex and water molecules, and this helps to stabilize the crystal structure. One water molecule is disordered over two sites with occupancies 0.84:0.16.


2015 ◽  
Vol 71 (10) ◽  
pp. 1219-1221 ◽  
Author(s):  
Alexander A. Golichenko ◽  
Alexander V. Shtemenko

The title compound, [Re2(C3H7COO)2Cl4{(CH3)2SO}2], comprises binuclear complex molecules [Re—Re = 2.24502 (13) Å] involvingcis-oriented double carboxylate bridges, four equatorial chloride ions and two weakly bonded O atoms from dimethyl sulfoxide ligands in the axial positions at the ReIIIatoms. In the crystal, molecules are linked into corrugated layers parallel to (101) by very weak C—H...Cl and C—H...O hydrogen-bonding interactions. C—H...Cl hydrogen bonding provides the links between layers to consolidate a three-dimensional framework.


1991 ◽  
Vol 44 (12) ◽  
pp. 1659 ◽  
Author(s):  
AT Baker ◽  
DC Craig ◽  
P Singh

Mono(ligand) palladium(II) complexes of 2,6-di-(thiazol-2-yl)pyridine (1a), 2,6-di(4-methylthia-zol-2-yl)pyridine (1b), 2,6-di(thiazol-4-yl)pyridine (2a), 2,6-di(imidazolin-2-yl]pyridine (3) and 2,6-di(benzimidazol-2-yl)pyridine (4a) of the general formula [ PdLCl ] Cl have been prepared. Stoichiometries have been confirmed by C, H, N and Pd analyses; the presence of solvate molecules has been confirmed by thermogravimetry . The crystal structure of [ PdLCl ]Cl.H2O, L = (3), has been determined by single-crystal X-ray diffractometry. The compound crystallizes in an orthorhombic space group, Pna21, a 7.427(2), b 21.932(3), c 8.935(1)Ǻ. The geometry of the complex cation is approximately square planar. The imidazolinyl rings closely approach planarity which is imposed by the delocalization of π-density in the NCN moiety. A hydrogen-bonding scheme involving the imino hydrogens of the ligand, chloride ions and the water molecule is present. The structure was refined by least-squares methods to a residual of 0.018 for 1273 reflections.


2014 ◽  
Vol 70 (2) ◽  
pp. i9-i10 ◽  
Author(s):  
Amira Souilem ◽  
Mohamed Faouzi Zid ◽  
Ahmed Driss

The title compound, lithium/sodium iron(III) bis[orthomolybdate(VI)], was obtained by a solid-state reaction. The main structure units are an FeO6octahedron, a distorted MoO6octahedron and an MoO4tetrahedron sharing corners. The crystal structure is composed of infinite double MoFeO11chains along theb-axis direction linked by corner-sharing to MoO4tetrahedra so as to form Fe2Mo3O19ribbons. The cohesion between ribbonsviamixed Mo—O—Fe bridges leads to layers arranged parallel to thebcplane. Adjacent layers are linked by corners shared between MoO4tetrahedra of one layer and FeO6octahedra of the other layer. The Na+and Li+ions partially occupy the same general position, with a site-occupancy ratio of 0.631 (9):0.369 (1). A comparison is made withAFe(MoO4)2(A= Li, Na, K and Cs) structures.


Author(s):  
Alejandro Hernandez ◽  
Indranil Chakraborty ◽  
Gabriela Ortega ◽  
Christopher J. Dares

The title compound, [UO2(acac)2(H2O)] consists of a uranyl(VI) unit ([O=U=O]2+) coordinated to two monoanionic acetylacetonate (acac, C5H7O2) ligands and one water molecule. The asymmetric unit includes a one-half of a uranium atom, one oxido ion, one-half of a water molecule and one acac ligand. The coordination about the uranium atom is distorted pentagonal–bipyramidal. The acac ligands and Ow atom comprise the equatorial plane, while the uranyl O atoms occupy the axial positions. Intermolecular hydrogen bonding between complexes results in the formation of two-dimensional hexagonal void channels along the c-axis direction with a diameter of 6.7 Å. The monoclinic (P21/c space group) polymorph was reported by Alcock & Flanders [(1987). Acta Cryst. C43, 1480–1483].


IUCrData ◽  
2018 ◽  
Vol 3 (8) ◽  
Author(s):  
Antoine Blaise Kama ◽  
Mamadou Sidibe ◽  
Cheikh Abdoul Khadre Diop ◽  
Florent Blanchard

The title compound, [Co(C6H6NO3S)2(H2O)2] n , was obtained from a mixture of Co(NO3)2·6H2O and a previously synthesized salt, namely CyNH3·NH2PhSO3, in a 1:1 ratio (Cy = cyclohexyl; Ph = phenyl). The crystal structure consists of a three-dimensional supramolecular framework, in which polymeric layers are interconnected via N—H...O and O—H...O hydrogen bonding. The polymeric layers are formed by an interconnection of neighbouring cobalt(II) cations via NH2PhSO3 − bridges. Each cobalt(II) cation is surrounded by four NH2PhSO3 − moieties and two water molecules, leading to a distorted octahedral environment.


1979 ◽  
Vol 32 (2) ◽  
pp. 301 ◽  
Author(s):  
V Diakiw ◽  
TW Hambley ◽  
DL Kepert ◽  
CL Raston ◽  
AH White

The crystal structure of the title compound, Ca(C6H2N307)2,5H2O, has been determined by single-crystal X-ray diffraction at 295(1) K and refined by least squares to a residual of 0.049 for 1513 'observed' reflections. Crystals are orthorhombic, Pmab, a 24.169(6), b l0.292(7), c 8.554(2) �, Z 4. The stereochemistry about the calcium has not been observed previously for the system [M(bidentate)2- (unidentate)4]; in the present structure, the calcium is coordinated by a pair of bidentate picrate ligands and the four water molecules in an array in which three of the water molecules occupy a triangular face of a square antiprism, the overall array having m symmetry. The remaining water molecule occupies a lattice site with no close interaction with the other species.


2006 ◽  
Vol 62 (4) ◽  
pp. m796-m798 ◽  
Author(s):  
Zerrin Heren ◽  
Cem Cüneyt Ersanlı ◽  
Cem Keser ◽  
Nazan Ocak Ískeleli

The crystal structure of the title compound, [Co(C6H4NO2)2(H2O)2]·2H2O, has been reinvestigated with improved precision [previous reports: Chang et al. (1972). J. Coord. Chem. 2, 31–34; Lumme et al. (1969). Suom. Kemistil. B, 42, 270]. In the title compound, the Co atom is located on an inversion center and its coordination can be described as slightly distorted octahedral, equatorially trans-coordinated by two N and O atoms of two picolinate ligands and axially coordinated by two O atoms of the water molecules. Intermolecular O—H...O and C—H...O hydrogen-bonding interactions result in the formation of an intricate three-dimensional network.


2015 ◽  
Vol 71 (10) ◽  
pp. 1165-1168
Author(s):  
Casseday P. Richers ◽  
Jeffery A. Bertke ◽  
Thomas B. Rauchfuss

The mononuclear title complex, [Fe(CF3O3S)(C5H7O2)2(C4H8O)] or [Fe(acac)2(OTf)(THF)] (acac = acetylacetonate; OTf = trifluoromethanesulfonate; THF = tetrahydrofuran), (I), consists of one six-coordinate Fe3+atom in a slightly distorted octahedral environment [Fe—O bond-length range = 1.9517 (11)–2.0781 (11) Å]. The triflate ligand was found to be disordered over two sets of sites, with a site-occupancy ratio of 0.622 (16):0.378 (16). Weak intermolecular C—H...O and C—H...F hydrogen-bonding interactions generate a two-dimensional supramolecular structure lying parallel to (100). This is only the second crystal structure reported of a mononuclear bis(acetylacetonato)iron(III) complex.


Sign in / Sign up

Export Citation Format

Share Document