tridentate ligands
Recently Published Documents


TOTAL DOCUMENTS

508
(FIVE YEARS 55)

H-INDEX

45
(FIVE YEARS 4)

2021 ◽  
Vol 446 ◽  
pp. 214127
Author(s):  
Mira T. Rupp ◽  
Natali Shevchenko ◽  
Garry S. Hanan ◽  
Dirk G. Kurth

Author(s):  
Valeriy Cherepakhin ◽  
Yurii F. Oprunenko ◽  
Andrei V. Churakov ◽  
Kirill V. Zaitsev
Keyword(s):  

Inorganics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 68
Author(s):  
Mohammed Altahan ◽  
Michael Beckett ◽  
Simon Coles ◽  
Peter Horton

Several oxidoborates, self-assembled from B(OH)3 and templated by cationic Ni(II) coordination compounds, were synthesized by crystallization from aqueous solution. These include the ionic compounds trans-[Ni(NH3)4(H2O)2][B4O5(OH)4].H2O (1), s-[Ni(dien)2][B5O6(OH)4]2 (dien = N-(2-aminoethyl)-1,2-ethanediamine (2), trans-[Ni(dmen)2(H2O)2] [B5O6(OH)4]2.2H2O (dmen = N,N-dimethyl-1,2-diaminoethane) (3), [Ni(HEen)2][B5O6(OH)4]2 (HEen = N-(2-hydroxyethyl)-1,2-diaminoethane) (4), [Ni(AEN)][B5O6(OH)4].H2O (AEN = 1-(3-azapropyl) -2,4-dimethyl-1,5,8-triazaocta-2,4-dienato(1-)) (5), trans-[Ni(dach)2(H2O)2][Ni(dach)2] [B7O9(OH)5]2.4H2O (dach = 1,2-diaminocyclohexane) (6), and the neutral species trans-[Ni(en)(H2O)2{B6O7(OH)6}].H2O (7) (en = 1,2-diaminoethane), and [Ni(dmen)(H2O){B6O7(OH)6}].5H2O (8). Compounds 1–8 were characterized by single-crystal XRD studies and by IR spectroscopy and 2, 4–7 were also characterized by thermal (TGA/DSC) methods and powder XDR studies. The solid-state structures of all compounds show extensive stabilizing H-bond interactions, important for their formation, and also display a range of gross structural features: 1 has an insular tetraborate(2-) anion, 2–5 have insular pentaborate(1-) anions, 6 has an insular heptaborate(2-) anion (‘O+’ isomer), whilst 7 and 8 have hexaborate(2-) anions directly coordinated to their Ni(II) centers, as bidentate or tridentate ligands, respectively. The Ni(II) centers are either octahedral (1–4, 7, 8) or square-planar (5), and compound 6 has both octahedral and square-planar metal geometries present within the structure as a double salt. Magnetic susceptibility measurements were undertaken on all compounds.


2021 ◽  
Vol 7 (6) ◽  
pp. 75
Author(s):  
Emmelyne Cuza ◽  
Samia Benmansour ◽  
Nathalie Cosquer ◽  
Françoise Conan ◽  
Carlos J. Gómez-García ◽  
...  

Reaction of Fe(II) with the tris-(pyridin-2-yl)ethoxymethane (py3C-OEt) tripodal ligand in the presence of the pseudohalide ancillary NCSe- (E = S, Se, BH3) ligand leads to the mononuclear complex [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN (3), which has been characterised as an isomorph of the two previously reported complexes, Fe(py3C-OEt)2][Fe(py3C-OEt)(NCE)3]2·2CH3CN, with E = S (1), BH3 (2). X-ray powder diffraction of the three complexes (1–3), associated with the previously reported single crystal structures of 1–2, revealed a monomeric isomorph structure for 3, formed by the spin crossover (SCO) anionic [Fe(py3C-OEt)(NCSe)3]− complex, associated with the low spin (LS) [Fe(py3C-OEt)2]2+ cationic complex and two solvent acetonitrile molecules. In the [Fe(py3C-OEt)2]2+ complex, the metal ion environment involves two py3C-OEt tridentate ligands, while the [Fe(py3C-OEt)(NCSe)3]− anion displays a hexacoordinated environment involving three N-donor atoms of one py3C-OEt ligand and three nitrogen atoms arising from the three (NCSe)− coligands. The magnetic studies for 3 performed in the temperature range 300-5-400 K, indicated the presence of a two-step SCO transition centred around 170 and 298 K, while when the sample was heated at 400 K until its complete desolvation, the magnetic behaviour of the high temperature transition (T1/2 = 298 K) shifted to a lower temperature until the two-step behaviour merged with a gradual one-step transition at ca. 216 K.


Author(s):  
Emmelyne Cuza ◽  
Samia Benmansour ◽  
Nathalie Cosquer ◽  
Francoise Conan ◽  
Carlos J. Gómez-García ◽  
...  

Reactions of Fe(II) with the tris-(pyridin-2-yl)ethoxymethane (py3C-OEt) tripodal ligand in presence of the pseudohalide ancillary NCE- (E = S, Se, BH3) ligands led to a series of three mononuclear complexes formulated as [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCE)3]2·2CH3CN, with E = S (1), BH3 (2) and Se (3). Single crystal characterizations (complexes 1-2) and X-ray powder diffraction (complexes 1-3) reveal monomeric isomorph structures formed by the spin crossover (SCO) anionic [Fe(py3C-OEt)(NCE)3] complex, associated with the low spin (LS) cationic [Fe(py3C-OEt)2]2+ complex and two solvent acetonitrile molecules. In the [Fe(py3C-OEt)2]2+ cation, the Fe(II) is coordinated by two py3C-OEt tridentate ligands, while the [Fe(py3C-OEt)(NCE)3] anion displays a hexacoordinated environment involving three N-donor atoms of one py3C-OEt ligand and three nitrogen atoms arising from of the three (NCE) coligands. The magnetic studies show the presence of gradual SCO behavior for the three complexes: a one-step transition around 205 K for 1 and two step-transitions for compounds 2 and 3, centred at 245 K and 380 K for 2, and at 170 K and 298 K for 3. The magnetic behaviors of complexes 1 and 2 remain unchanged when heating up to 500 K, while complex 3 shows significant changes which are caused by the crystallisation solvent loss above room temperature.


Author(s):  
Ilya A. Babenko ◽  
Viktor A. Bezborodov ◽  
Alexey I. Vilms

This work presents the results of studying the behavior of catalytic systems formed on the basis of trichlorotris-(tetrahydrofuranate)chromium(III) in the presence of sulfur-containing tridentate SOS-type ligands and activated by various organoaluminum compounds. In the formation of catalytic systems, the following compounds were used: SOS-type ligands - bis-(2-methylthioethyl) ether, bis-(2-ethylthioethyl) ether and bis-(2-phenylthioethyl) ether, organoaluminum compounds - triethylaluminum, triisobutylaluminum, tributylaluminum and methylaluminoxane. In the course of test experiments aimed at choosing an activator at a temperature of 40 °C and an ethylene pressure of 2 MPa, the best results were obtained for triethylaluminum. Therefore, further experiments on the catalytic conversion of ethylene were carried out only with this activator. To study the effect of the reaction temperature and ethylene pressure in the reaction zone, catalytic systems of the trichlorotris-(tetrahydrofuranate)chromium(III)/ligand/triethylaluminum composition were studied in the temperature range from 40 to 80 °C and an ethylene pressure of 2 - 3 MPa with a molar ratio of components Cr : L : AlEt3 = 1 : 1 : 20. As a result of studies, it was shown that in all cases when using tridentate ligands of the SOS type, the catalytic systems formed by us showed a tendency not only to polymerization, but also to oligomerization of ethylene. The best results in the field of ethylene oligomerization into hexenes were shown by the system of the composition trichlorotris-(tetrahydrofuranate)chromium(III) / bis-(2-methylthioethyl) ether/triethylaluminum, in which the content of the hexene fraction is 54 - 55 wt.%, while the selectivity to hexene-1 reaches 88 - 89%.


Sign in / Sign up

Export Citation Format

Share Document