scholarly journals Crystal structure of ethyl 3-amino-6-methyl-2-[(4-methylphenyl)carbamoyl]-4-[(E)-2-phenylethenyl]thieno[2,3-b]pyridine-5-carboxylate monohydrate

Author(s):  
Joel T. Mague ◽  
Mehmet Akkurt ◽  
Shaaban K. Mohamed ◽  
Etify A. Bakhite ◽  
Mustafa R. Albayati

In the title molecule, C27H25N3O3S·H2O, the dihedral angle between the planes of the thienyl ring and the pendantp-tolyl group is 39.25 (6)°, while that between the pyridine ring and the pendant phenyl ring is 44.37 (6)°. In addition, there is a slight twist in the bicyclic core, with a dihedral angle of 2.39 (4)° between the thienyl and pyridine rings. The conformation of the carbamoyl moiety is partially determined by an intramolecular N—H...O hydrogen bond. In the crystal, complementary N—H...O hydrogen bonds form dimers which are then associated into chains parallel to thecaxis through O—H...N hydrogen bonds involving the water molecule of crystallization. Electron density associated with an additional solvent molecule of partial occupancy and disordered about a twofold axis was removed with the SQUEEZE procedure inPLATON[Spek (2015).Acta Cryst.C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).

2015 ◽  
Vol 71 (9) ◽  
pp. o645-o646
Author(s):  
Rajamani Raja ◽  
Subramani Kandhasamy ◽  
Paramasivam T. Perumal ◽  
A. SubbiahPandi

In the title compound, C23H16N2O7, the mean planes of the two chromene units (r.m.s. deviations = 0.031 and 0.064 Å) are almost normal to one another with a dihedral angle of 85.59 (6)°. The central six-membered pyran ring has a distorted envelope conformation, with the methine C atom at the flap. There is an intramolecular N—H...O hydrogen bond, which generates anS(6) ring motif. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with anR22(12) ring motif. The dimers are linked by pairs of C—H...O hydrogen bonds, enclosingR22(6) ring motifs, forming zigzag chains along [001]. The chains are linked by a second pair of C—H...O hydrogen bonds, forming slabs parallel to (110). Within the slabs there are C—H...π interactions present. A region of disordered electron density was treated with the SQUEEZE procedure inPLATON[Spek (2015).Acta Cryst.C71, 9–18] following unsuccessful attempts to model it as plausible solvent molecule(s). The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).


2018 ◽  
Vol 74 (10) ◽  
pp. 1467-1470 ◽  
Author(s):  
Robert D. Sanner ◽  
Victor G. Young

The crystal structures of bis{3,5-difluoro-2-[4-(2,4,6-trimethylphenyl)pyridin-2-yl]phenyl-κ2 N,C 1}(picolinato-κ2 N,O)iridium(III), [Ir(C20H16F2N)2(C6H4NO2)], 1, and bis[2-(4-tert-butylpyridin-2-yl)-3,5-difluorophenyl-κ2 N,C 1](picolinato-κ2 N,O)iridium(III), [Ir(C15H14F2N)2(C6H4NO2)], 2, are presented herein. These phosphorescent cyclometallated iridium(III) compounds have been structurally investigated in order to better understand the nature of their blue-shifted emssions while maintaining high quantum yields. Compound 1 exhibits substantial twisting of the mesitylene rings out of the plane of the attached pyridine ring, with dihedral angles of 67.0 (1) and 78.7 (1)° between the best mean planes. For both compounds, the contribution of disordered solvent molecule(s) was removed using the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] routine in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. These solvent molecules are not considered in the given chemical formula and other crystal data.


Author(s):  
Olha Buchko ◽  
Viktoriya Dyakonenko ◽  
Elena Martsinko ◽  
Elena Chebanenko

The asymmetric unit of the title compound, [Co(C12H8N2)2(H2O)2]2[Ge(C6H5O7)2](NO3)2, features two complex [(C12H8N2)2(H2O)2Co]2+ cations, two NO3 − anions as well as one centrosymmetric [(C6H5O7)2Ge]2− anion. Two HCit ligands (Cit = citrate, C6H4O7) each coordinate via three different oxygen atoms (hydroxylate, α-carboxylate, β-carboxylate) to the Ge atom, forming a slightly distorted octahedron. The coordination polyhedron of the Co atom is also octahedral, formed by coordination of four nitrogen atoms from two phenanthroline molecules and two water oxygen atoms. In the crystal, the cations and anions are linked by hydrogen bonds and form layers parallel to the bc plane. The structure exhibits disorder of the NO3 − anion [disorder ratio 0.688 (9) to 0.312 (9)]. There are also highly disordered solvent molecules (presumably water and/or ethanol) in the crystal structure; explicit refinement of these molecules was not possible, and the content of the voids was instead taken into account using reverse Fourier transform methods [SQUEEZE procedure in PLATON; Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).


Author(s):  
Hugo Santalla ◽  
Saray Argibay

In the title cholesterol analogue, [systematic name: (3S,8S,9S,10R,13S,14S,17R)-17-{(S)-1-[4-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl]-6-methylheptan-2-yl}-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol] C32H53N3O2, a new chain, including an intermediate triazole and a tertiary hydroxyl group in the terminal position, has been added at position 20 inducing a change in its stereochemistry. In the crystal, molecules are linked by O—H...O and O—H...N hydrogen bonds, forming layers lying parallel to (-201) and enclosing R 4 4(36) ring motifs. The isopropyl group is disordered about two positions with a refined occupancy ratio of 0.763 (5):0.237 (5). A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON (Spek (2015). Acta Cryst. C71, 9–18). The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).


IUCrData ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Martha Höhne ◽  
Marc Gongoll ◽  
Anke Spannenberg ◽  
Bernd H. Müller ◽  
Normen Peulecke ◽  
...  

The title complex, [Mo(C24H30N2P2)(CO)4], contains a molybdenum centre bearing a P,P′-cis-chelating Ph2PN( i Pr)P(Ph)NH( i Pr) and four carbonyl ligands in a distorted octahedral coordination geometry. This results in a nearly planar four-membered metallacycle. In the crystal, molecules are linked by N—H...O and C—H...O hydrogen bonds to form layers parallel to the ac plane. For the final refinement, the contributions of disordered solvent molecules were removed from the diffraction data with SQUEEZE in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).


IUCrData ◽  
2018 ◽  
Vol 3 (12) ◽  
Author(s):  
Masatomo Makino ◽  
Kazuhiko Matsubayashi ◽  
Yukiko Kodama-Oda ◽  
Naoto Imawaka ◽  
Nobuhiro Mizuno ◽  
...  

The supramolecular features in the title compound, [2,3,9,10,16,17,23,24-octakis(2,6-dimethylphenoxy)phthalocyaninato]zinc(II) bis[(5,10,15,20-tetraphenylporphyrinato)zinc(II)] chloroform tetrasolvate, [Zn(C96H80N8O8)][Zn(C44H28N4)]2·4CHCl3 or [Zn(Pc)][Zn(TPP)]2·4CHCl3, result from a self-assembly of one molecule of [2,3,9,10,16,17,23,24-octakis(2,6-dimethylphenoxy)phthalocyaninato]zinc(II) (ZnPc) and two molecules of (5,10,15,20-tetraphenylporphyrinato)zinc(II) (ZnTPP). One half ZnPc, one ZnTPP and two chloroform molecules define the asymmetric unit, with the zinc(II) cation of ZnPc situated on an inversion centre. In the supramolecule, the central ZnPc moiety is sandwiched between two ZnTPPs moieties in a co-facial conformation with a π-conjugated system, leading to a nearly H-type aggregate with a distance of 3.4967 (5) Å between adjacent zinc sites. The ZnTPP units are slightly glided away to form a partial ecliptic arrangement. Each phenyl group of the TPP ligand is anchored above the N atom of the isoindole linker of the Pc ligand through weak C—H...N hydrogen bonds and is held into the crevice between the two dimethylphenoxy groups of phthalocyanine via van der Waals interactions. In the crystal, chloroform solvent molecules are situated between the supramolecules. There is another solvent-accessible void of 341 (2) Å3. The contribution of disordered solvent molecules situated in this void was removed from the diffraction data using SQUEEZE in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not consider this unknown solvent molecule(s).


IUCrData ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Rahul Chaurasia ◽  
Akhilesh Bharti ◽  
Ray J. Butcher ◽  
Jan L. Wikaira ◽  
Manoj K. Bharty

In the title compound, C15H21N3O2S, a short intramolecular N—H...O hydrogen bond generates anS(6) ring. The molecule is twisted with a dihedral angle between the benzene ring and the mean plane of the cyclohexyl ring being 58.90 (6)°. In the crystal, inversion dimers are formed with each molecule linked to the other by two N—H(H)...O hydrogen bonds to the same acceptor, generatingR21(6) loops. A region of disordered electron density was corrected for using the SQUEEZE routine inPLATON[Spek (2015).ActaCryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).


IUCrData ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
G. Vinotha ◽  
T. V. Sundar ◽  
N. Sharmila

In the title compound, C30H31NO3S2, the piperidine ring adopts a distorted chair conformation. The thiophene rings have twisted conformations about the C—C bonds. The mean plane of the piperidine ring makes a near orthogonal conformation with the toluene ring. Two of the phenyl rings in the structure are positionally disordered over two sets of sites with occupancies of 0.56 (2)/0.44 (2) and 0.672 (16)/0.328 (16). A region of disordered electron density was corrected for using the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] routine in PLATON. The given chemical formula and other crystal data do not take into account the unknown solvent molecule. In the crystal, O—H...O hydrogen bonds are observed along with intramolecular S...H, O...H, C...H and H...H contacts.


2017 ◽  
Vol 73 (8) ◽  
pp. 1264-1267 ◽  
Author(s):  
Okky Dwichandra Putra ◽  
Daiki Umeda ◽  
Kaori Fukuzawa ◽  
Mihoko Gunji ◽  
Etsuo Yonemochi

Epalerstat {systematic name: (5Z)-5-[(2E)-2-methyl-3-phenylprop-2-en-1-ylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidine-3-acetic acid} crystallized as an acetone monosolvate, C15H13NO3S2·C3H6O. In the epalerstat molecule, the methylpropylenediene moiety is inclined to the phenyl ring and the five-membered rhodamine ring by 21.4 (4) and 4.7 (4)°, respectively. In addition, the acetic acid moiety is found to be almost normal to the rhodamine ring, making a dihedral angle of 85.1 (2)°. In the crystal, a pair of O—H...O hydrogen bonds between the carboxylic acid groups of epalerstat molecules form inversion dimers with an R 2 2(8) loop. The dimers are linked by pairs of C—H...O hydrogen bonds, enclosing R 2 2(20) loops, forming chains propagating along the [101] direction. In addition, the acetone molecules are linked to the chain by a C—H...O hydrogen bond. Epalerstat acetone monosolvate was found to be isotypic with epalerstat tertrahydrofuran solvate [Umeda et al. (2017). Acta Cryst. E73, 941–944].


2014 ◽  
Vol 70 (3) ◽  
pp. o357-o358 ◽  
Author(s):  
Devinder K. Sharma ◽  
Chetan S. Shripanavar ◽  
Sumati Anthal ◽  
Vivek K. Gupta ◽  
Rajni Kant

In the title molecule, C24H22N4O3, the plane of the oxadiazole ring forms a dihedral angle of 32.41 (12)° with that of the phenyl ring and dihedral angles of 74.51 (10) and 56.38 (10)° with the planes of the benzene rings. In the crystal, pairs of N—H...N hydrogen bonds link molecules into inversion dimers featuringR22(8) graph-set motifs.


Sign in / Sign up

Export Citation Format

Share Document