scholarly journals 6-Methyl-2-oxo-N-(quinolin-6-yl)-2H-chromene-3-carboxamide: crystal structure and Hirshfeld surface analysis

2016 ◽  
Vol 72 (8) ◽  
pp. 1121-1125
Author(s):  
Lígia R. Gomes ◽  
John Nicolson Low ◽  
André Fonseca ◽  
Maria João Matos ◽  
Fernanda Borges

The title coumarin derivative, C20H14N2O3, displays intramolecular N—H...O and weak C—H...O hydrogen bonds, which probably contribute to the approximate planarity of the molecule [dihedral angle between the coumarin and quinoline ring systems = 6.08 (6)°]. The supramolecular structures feature C—H...O hydrogen bonds and π–π interactions, as confirmed by Hirshfeld surface analyses.

Author(s):  
K. Osahon Ogbeide ◽  
Rajesh Kumar ◽  
Mujeeb-Ur-Rehman ◽  
Bodunde Owolabi ◽  
Abiodun Falodun ◽  
...  

The title compound, C29H36O5, a cassane-type diterpenoid {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihydroxy-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl 3-phenylprop-2-enoate}, was isolated from a medicinally important plant,Caesalpinia pulcherrima(Fabaceae). In the molecule, three cyclohexane rings aretrans-fused and adopt chair, chair and half-chair conformations. In the crystal, molecules are linkedviaO—H...O hydrogen bonds, forming a tape structure along theb-axis direction. The tapes are further linked into a double-tape structure through C—H...π interactions. The Hirshfeld surface analysis indicates that the contributions to the crystal packing are H...H (65.5%), C...H (18.7%), O...H (14.5%) and C...O (0.3%).


2018 ◽  
Vol 74 (12) ◽  
pp. 1746-1750 ◽  
Author(s):  
Asmaa Saber ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Brahim Hni ◽  
Joel T. Mague ◽  
...  

In the title compound, C21H20N4O2, the intramolecular C—H...O hydrogen-bonded benzodiazolone moieties are planar to within 0.017 (1) and 0.026 (1) Å, and are oriented at a dihedral angle of 57.35 (3)°. In the crystal, two sets of intermolecular C—H...O hydrogen bonds generate layers parallel to the bc plane. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (51.8%), H...C/C...H (30.7%) and H...O/O...H (11.2%) interactions.


Author(s):  
Enis Nadia Md Yusof ◽  
Mukesh M. Jotani ◽  
Edward R. T. Tiekink ◽  
Thahira B. S. A. Ravoof

The title dithiocarbazate ester, C16H16N2O2S2, comprises two almost planar residues,i.e. the phenyl ring and the remaining 14 non-H atoms (r.m.s. deviation = 0.0410 Å). These are orientated perpendicularly, forming a dihedral angle of 82.72 (5)°. An intramolecular hydroxy-O—H...N(imine) hydrogen bond, leading to anS(6) loop, is noted. An analysis of the geometric parameters is consistent with the molecule existing as the thione tautomer, and the conformation about the C=N bond isE. The thione S and imine H atoms lie to the same side of the molecule, facilitating the formation of intermolecular N—H...S hydrogen bonds leading to eight-membered {...HNCS}2synthons in the crystal. These aggregates are connected by phenyl-C—H...O(hydroxy) interactions into a supramolecular layer in thebcplane; these stack with no directional interactions between them. An analysis of the Hirshfeld surface confirms the nature of the intermolecular interactions.


Author(s):  
Fouad El Kalai ◽  
Cemile Baydere ◽  
Said Daoui ◽  
Rafik Saddik ◽  
Necmi Dege ◽  
...  

The title pyridazinone derivative, C21H19ClN2O3, is not planar. The unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)° whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°]. In the crystal, C—H...O hydrogen bonds generate dimers with R 2 2(10) and R 2 2(24) ring motifs which are linked by C—H...O interactions, forming chains extending parallel to the c-axis direction. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most significant contributions to the crystal packing are from H...H (44.5%), C...H/H...C (18.5%), H...O/H...O (15.6%), Cl...H/H...Cl (10.6%) and C...C (2.8%) contacts.


2019 ◽  
Vol 75 (11) ◽  
pp. 1774-1782
Author(s):  
Ligia R. Gomes ◽  
John Nicolson Low ◽  
James L. Wardell ◽  
Marcus V. N. de Souza ◽  
Cristiane F. da Costa

A 1:1 epimeric mixture of 3-[(4-nitrobenzylidene)amino]-2(R,S)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one, C19H19N5O5, was isolated from a reaction mixture of 2(S)-amino-3-methyl-1-oxobutanehydrazine and 4-nitrobenzaldehyde in ethanol. The product was derived from an initial reaction of 2(S)-amino-3-methyl-1-oxobutanehydrazine at its hydrazine group to provide a 4-nitrobenzylidene derivative, followed by a cyclization reaction with another molecule of 4-nitrobenzaldehyde to form the chiral five-membered imidazolidin-4-one ring. The formation of the five-membered imidazolidin-4-one ring occurred with retention of the configuration at the 5-position, but with racemization at the 2-position. In the crystal, N—H...O(nitro) hydrogen bonds, weak C—H...O(carbonyl) and C—H...O(nitro) hydrogen bonds, as well as C—H...π, N—H...π and π–π interactions, are present. These combine to generate a three-dimensional array. Hirshfeld surface analysis and PIXEL calculations are also reported.


Author(s):  
Marlon D. L. Tonin ◽  
Simon J. Garden ◽  
Mukesh M. Jotani ◽  
Solange M. S. V. Wardell ◽  
James L. Wardell ◽  
...  

The asymmetric unit of the title co-crystal, C10H5BrO2·C14H8O4[systematic name: 2-bromo-1,4-dihydronaphthalene-1,4-dione–1,8-dihydroxy-9,10-dihydroanthracene-9,10-dione (1/1)], features one molecule of each coformer. The 2-bromonaphthoquinone molecule is almost planar [r.m.s deviation of the 13 non-H atoms = 0.060 Å, with the maximum deviations of 0.093 (1) and 0.099 (1) Å being for the Br atom and a carbonyl-O atom, respectively]. The 1,8-dihydroxyanthraquinone molecule is planar (r.m.s. deviation for the 18 non-H atoms is 0.022 Å) and features two intramolecular hydroxy-O—H...O(carbonyl) hydrogen bonds. Dimeric aggregates of 1,8-dihydroxyanthraquinone molecules assemble through weak intermolecular hydroxy-O—H...O(carbonyl) hydrogen bonds. The molecular packing comprises stacks of molecules of 2-bromonaphthoquinone and dimeric assembles of 1,8-dihydroxyanthraquinone with the shortest π–π contact within a stack of 3.5760 (9) Å occurring between the different rings of 2-bromonaphthoquinone molecules. The analysis of the Hirshfeld surface reveals the importance of the interactions just indicated but, also the contribution of additional C—H...O contacts as well as C=O...π interactions to the molecular packing.


Author(s):  
Shaaban K. Mohamed ◽  
Joel T. Mague ◽  
Mehmet Akkurt ◽  
Farouq E. Hawaiz ◽  
Sahar M. I. Elgarhy ◽  
...  

In the crystal, the molecule of the title compound, C26H20N2O3, has crystallographically imposed twofold rotation symmetry. The crystal packing consists of layers parallel to the ab plane formed by O—H...N and C—H...O hydrogen bonds. Between the layers, C—H...π interactions are observed.


2021 ◽  
Vol 77 (10) ◽  
pp. 1048-1053
Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Gunay Z. Mammadova ◽  
Ajaya Bhattarai

In the title compound, C24H18Cl3NO3, the tetrahydrofuran rings adopt envelope conformations. In the crystal, C—H...O hydrogen bonds connect molecules, generating layers parallel to the (001) plane. These layers are connected along the c-axis direction by C—H...π interactions. The packing is further stabilized by interlayer van der Waals and interhalogen interactions. The most important contributions to the surface contacts are from H...H (36.8%), Cl...H/H...Cl (26.6%), C...H/H...C (18.8%) and O...H/H...O (11.3%) interactions, as concluded from a Hirshfeld surface analysis.


Author(s):  
Lhoussaine El Ghayati ◽  
Youssef Ramli ◽  
Tuncer Hökelek ◽  
Mohamed Labd Taha ◽  
Joel T. Mague ◽  
...  

The title compound, C20H17N3O3[systematic name: 2-(6-methyl-2,4-dioxopyran-3-ylidene)-4-(pyridin-4-yl)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine], is built up from a benzodiazepine ring system linked to pyridyl and pendant dihydropyran rings, where the benzene and pyridyl rings are oriented at a dihedral angle of 43.36 (6)°. The pendant dihydropyran ring is rotationally disordered in a 90.899 (3):0.101 (3) ratio with the orientation of each component largely determined by intramolecular N—HDiazp...ODhydp(Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds. In the crystal, molecules are linked via pairs of weak intermolecular N—HDiazp...ODhydphydrogen bonds, forming inversion-related dimers withR22(26) ring motifs. The dimers are further connected along theb-axis direction by π–π stacking interactions between the pendant dihydropyran and pyridyl rings with centroid–centroid distances of 3.833 (3) Å and a dihedral angle of 14.51 (2)°. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (50.1%), H...C/C...H (17.7%), H...O/O...H (16.8%), C...C (7.7%) and H...N/N...H (5.3%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing.


2019 ◽  
Vol 75 (12) ◽  
pp. 1861-1865
Author(s):  
Trung Vu Quoc ◽  
Duong Tran Thi Thuy ◽  
Thanh Phung Ngoc ◽  
Manh Vu Quoc ◽  
Hien Nguyen ◽  
...  

In the title compound, C17H21NO4S, the 1,4-dihydropyridine ring has an envelope conformation with the Csp 3 atom at the flap. The thiophene ring is nearly perpendicular to the best plane through the 1,4-dihydropyridine ring, the dihedral angle being 82.19 (13)°. In the crystal, chains running along the b-axis direction are formed through N—H...O interactions between the 1,4-dihydropyridine N atom and one of the O atoms of the ester groups. Neighbouring chains are linked by C—H...O and C—H...π interactions. A Hirshfeld surface analysis shows that the most prominent contributuion to the surface contacts are H...H contacts (55.1%).


Sign in / Sign up

Export Citation Format

Share Document