scholarly journals Crystal structure of (S)-sec-butylammoniumL-tartrate monohydrate

Author(s):  
Ernlie A. Publicover ◽  
Jennifer Kolwich ◽  
Darcie L. Stack ◽  
Alyssa J. Doué ◽  
Kai E. O. Ylijoki

The title hydrated molecular salt, C4H12N+·C4H5O6−·H2O, was prepared by deprotonation of enantiopure L-tartaric acid with racemicsec-butylamine in water. Only one enantiomer was observed crystallographically, resulting from the combination of (S)-sec-butylamine with L-tartaric acid. Thesec-butylammonium moiety is disordered over two conformations related by rotation around the CH–CH2bond; the refined occupancy ratio is 0.68 (1):0.32 (1). In the crystal, molecules are linked through a network of O—H...O and N—H...O hydrogen-bonding interactions, between the ammonium H atoms, the tartrate hydroxy H atoms, and the interstitial water, forming a three-dimensional supramolecular structure.

2015 ◽  
Vol 71 (10) ◽  
pp. 1199-1202 ◽  
Author(s):  
Selladurai Sathiskumar ◽  
Thangavelu Balakrishnan ◽  
Kandasamy Ramamurthi ◽  
Subbiah Thamotharan

In the title coordination polymer, {[Sr(C5H9NO2)(H2O)4]Br2}n, the proline molecule exists in a zwitterionic form with one of the ring C atoms disordered over two sites [site-occupancy factors = 0.57 (6):0.43 (6)]. The SrIIion is nine-coordinated by six water O atoms, two monodentate and two μ2-bridging, and three carboxylate O atoms of the proline ligands, with two bridging [Sr—O range = 2.524 (4)–2.800 (5) Å]. In the crystal, there is no direct interaction between the proline molecules. However, the proline and water molecules associate with the bromide counter-anions through a number of intermolecular O—H...Br and N—H...Br hydrogen-bonding interactions, giving a three-dimensional supramolecular structure.


2006 ◽  
Vol 62 (4) ◽  
pp. m796-m798 ◽  
Author(s):  
Zerrin Heren ◽  
Cem Cüneyt Ersanlı ◽  
Cem Keser ◽  
Nazan Ocak Ískeleli

The crystal structure of the title compound, [Co(C6H4NO2)2(H2O)2]·2H2O, has been reinvestigated with improved precision [previous reports: Chang et al. (1972). J. Coord. Chem. 2, 31–34; Lumme et al. (1969). Suom. Kemistil. B, 42, 270]. In the title compound, the Co atom is located on an inversion center and its coordination can be described as slightly distorted octahedral, equatorially trans-coordinated by two N and O atoms of two picolinate ligands and axially coordinated by two O atoms of the water molecules. Intermolecular O—H...O and C—H...O hydrogen-bonding interactions result in the formation of an intricate three-dimensional network.


Author(s):  
Yukiko Yamaguchi-Terasaki ◽  
Takashi Fujihara ◽  
Akira Nagasawa ◽  
Sumio Kaizaki

In the neutral complex molecule of the title compound,fac-[CrCl3(tpa)] [tpa is tris(pyridin-2-yl)amine; C15H12N4], the CrIIIion is bonded to three N atoms that are constrained to afacialarrangement by the tpa ligand and by three chloride ligands, leading to a distorted octahedral coordination sphere. The average Cr—N and Cr—Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex molecule is located on a mirror plane. In the crystal, a combination of C—H...N and C—H...Cl hydrogen-bonding interactions connect the molecules into a three-dimensional network.


2007 ◽  
Vol 63 (3) ◽  
pp. m761-m763 ◽  
Author(s):  
Yan Jiao ◽  
Zhao-Rui Pan ◽  
Zhi-Jie Fang ◽  
Yi-Zhi Li ◽  
He-Gen Zheng

In the crystal structure of the title compound, [Ni(C6H4N2O4S)(H2O)3]·2.5H2O, the NiII atom is six-coordinated by one 2-(6-oxido-4-oxo-3,4-dihydropyimidin-2-ylsulfanyl)acetate ligand and three water molecules. Hydrogen-bonding interactions between the coordinated and uncoordinated water molecules and between the water molecules and the organic ligand result in a three-dimensional network structure.


2017 ◽  
Vol 73 (11) ◽  
pp. 1712-1715 ◽  
Author(s):  
Sergey N. Britvin ◽  
Andrey M. Rumyantsev

The structure of a salt of diprotonatedendo-3-aminotropane crystallized with a copper(II) anionic cluster is reported,viz.(C8H18N2)[CuCl3(NO3)(H2O)]. Neither ion in the salt has been structurally characterized previously. In the crystal, the ions pack together to form a three-dimensional structure held together by a network of intermolecular N—H...O, O—H...Cl and N—H...Cl hydrogen-bonding interactions. Selective crystallization of the title compound can be considered as a simple method for the separation of theexoandendoisomers of 3-aminotropane.


Author(s):  
Nina R. Marogoa ◽  
D.V. Kama ◽  
Hendrik G. Visser ◽  
M. Schutte-Smith

Each central platinum(II) atom in the crystal structures of chlorido[dihydroxybis(1-iminoethoxy)arsanido-κ3 N,As,N′]platinum(II), [Pt(C4H10AsN2O4)Cl] (1), and of chlorido[dihydroxybis(1-iminopropoxy)arsanido-κ3 N,As,N′]platinum(II), [Pt(C6H14AsN2O4)Cl] (2), is coordinated by two nitrogen donor atoms, a chlorido ligand and to arsenic, which, in turn, is coordinated by two oxygen donor ligands, two hydroxyl ligands and the platinum(II) atom. The square-planar and trigonal–bipyramidal coordination environments around platinum and arsenic, respectively, are significantly distorted with the largest outliers being 173.90 (13) and 106.98 (14)° for platinum and arsenic in (1), and 173.20 (14)° and 94.20 (9)° for (2), respectively. One intramolecular and four classical intermolecular hydrogen-bonding interactions are observed in the crystal structure of (1), which give rise to an infinite three-dimensional network. A similar situation (one intramolecular and four classical intermolecular hydrogen-bonding interactions) is observed in the crystal structure of (2). Various π-interactions are present in (1) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.7225 (7) Å, and between the centroids of five-membered (Pt, As, C, N, O) rings of neighbouring molecules with distances of 3.7456 (4) and 3.7960 (6) Å. Likewise, weak π-interactions are observed in (2) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.8213 (2) Å, as well as between the Cl atom and the centroid of a symmetry-related five-membered ring with a distance of 3.8252 (12) Å. Differences between (2) and the reported polymorph [Miodragović et al. (2013). Angew. Chem. Int. Ed. 52, 10749–10752] are discussed.


Author(s):  
Chen Zhao ◽  
Yi Li ◽  
Jin-Sheng Xiao ◽  
Peng-Dan Zhang ◽  
Xue-Qian Wu ◽  
...  

The asymmetric unit of the title coordination polymer, [Co(C9H4N2O4)(C2H4N4)] n or [Co(L 1)(L 2)] n , consists of one crystallographically independent Co2+ centre, one L 1 2− ligand and one L 2 ligand (L 1 = 1H-benzimidazole-5,6-dicarboxylic acid, L 2 = 3-amino-1,2,4-triazole). The Co2+ centre is coordinated by two carboxylato-O atoms from two independent L 1 2− ligands and two nitrogen atoms from L 2 and another L 1 ligand. Thus, the metal center adopts a four-coordinate mode, forming a tetrahedral geometry. Interestingly, through the combination of two L 1 2−, two L 2 ligands and two Co2+ ions, a basic repeating unit is constructed, resulting in the formation of a one-dimensional straight chain structure. These chains are further expanded to the final three-dimensional framework via N—H...O hydrogen-bonding interactions.


Author(s):  
Meriem Benslimane ◽  
Yasmine Kheira Redjel ◽  
Hocine Merazig ◽  
Jean-Claude Daran

The principal building units in the crystal structure of ammonium aquabis(sulfato)lanthanate(III) are slightly distorted SO4tetrahedra, LaO9polyhedra in the form of distorted tricapped trigonal prisms, and NH4+ions. The La3+cation is coordinated by eight O atoms from six different sulfate tetrahedra, two of which are bidentate coordinating and four monodentate, as well as one O atom from a water molecule; each sulfate anion bridges three La3+cations. These bridging modes result in the formation of a three-dimensional anionic [La(SO4)2(H2O)]−framework that is stabilized by O—H...O hydrogen-bonding interactions. The disordered ammonium cations are situated in the cavities of this framework and are hydrogen-bonded to six surrounding O atoms.


Author(s):  
Konrad Seppelt ◽  
Roland Friedemann

In the complex cation of the binuclear solvated title salt, [Pt2F(SbF6)2(C8H12)2]SbF6·0.75HF, an F atom bridges the two platinum(II) atoms with a bond angle of 123.3 (2)°. The corresponding Pt—F bond lengths are in the range of other fluorine-bridged binuclear platinum(II) complexes. Two of the three SbF6−anions each coordinate with one F atom to one platinum(II) atom. Including the η4-bound cyclooctadiene (COD) ligands, the overall coordination sphere of each platinum(II) atom is square-planar. The third SbF6−anion is not bound to the complex. Hydrogen fluoride is present in the crystal structure as a solvent disordered over three positions, each with an occupancy of 0.25. F...F distances of 2.5512 (7), 2.6076 (8) and 3.2215 (10) Å to surrounding SbF6−anions are indicative of F—H...F hydrogen-bonding interactions although no H atoms could be localized for the disordered solvent molecules. The resulting hydrogen-bonded network is three-dimensional.


2015 ◽  
Vol 71 (2) ◽  
pp. 136-139
Author(s):  
Meng Wen ◽  
Zu-Ping Xiao ◽  
Chun-Ya Wang ◽  
Xi-He Huang

The title compound, {[Zn4(C8H4O4)3(OH)2(C12H6N2O2)2]·2H2O}n, has been prepared hydrothermally by the reaction of Zn(NO3)2·6H2O with benzene-1,4-dicarboxylic acid (H2bdc) and 1,10-phenanthroline-5,6-dione (pdon) in H2O. In the crystal structure, a tetranuclear Zn4(OH)2fragment is located on a crystallographic inversion centre which relates two subunits, each containing a [ZnN2O4] octahedron and a [ZnO4] tetrahedron bridged by a μ3-OH group. The pdon ligand chelates to zinc through its two N atoms to form part of the [ZnN2O4] octahedron. The two crystallographically independent bdc2−ligands are fully deprotonated and adopt μ3-κO:κO′:κO′′ and μ4-κO:κO′:κO′′:κO′′′ coordination modes, bridging three or four ZnIIcations, respectively, from two Zn4(OH)2units. The Zn4(OH)2fragment connects six neighbouring tetranuclear units through four μ3-bdc2−and two μ4-bdc2−ligands, forming a three-dimensional framework with uninodal 6-connected α-Po topology, in which the tetranuclear Zn4(OH)2units are considered as 6-connected nodes and the bdc2−ligands act as linkers. The uncoordinated water molecules are located on opposite sides of the Zn4(OH)2unit and are connected to it through hydrogen-bonding interactions involving hydroxide and carboxylate groups. The structure is further stabilized by extensive π–π interactions between the pdon and μ4-bdc2−ligands.


Sign in / Sign up

Export Citation Format

Share Document