scholarly journals Crystal structure and optical properties of fused-ring chalcone (E)-3-(anthracen-9-yl)-1-(4-nitrophenyl)prop-2-en-1-one

Author(s):  
Muhamad Fikri Zaini ◽  
Ibrahim Abdul Razak ◽  
Wan Mohd Khairul ◽  
Suhana Arshad

The title compound, C23H15NO3, adopts an s-cis conformation with respect to the ethylene C=C and carbonyl C=O double bonds in the enone unit. The molecule is significantly twisted with a dihedral angle of 48.63 (14)° between the anthracene ring system and the benzene ring. In the crystal, molecules are linked into inversion dimers with an R 2 2(10) graph-set motif via pairs of C—H...O hydrogen bonds. The intermolecular interactions were analysed and quantified by Hirshfeld surface analysis. The molecular structure was optimized and a small HOMO–LUMO energy gap of 2.55 eV was obtained using the DFT method at the B3LYP/6–311 G++(d,p) level of theory. This value is in close agreement with the experimental value of 2.52 eV obtained from the UV–vis analysis. The crystal used was a two-component merohedral twin with a refined ratio of 0.1996 (16):0.8004 (16).

2020 ◽  
Vol 76 (8) ◽  
pp. 1296-1301
Author(s):  
Ayman Zouitini ◽  
Md. Serajul Haque Faizi ◽  
Younes Ouzidan ◽  
Fouad Ouazzani Chahdi ◽  
Jérôme Marrot ◽  
...  

The asymmetric unit of the title compound, C11H12N2O2·H2O, contains a molecule of 1,4,6-trimethyl-1,4-dihydroquinoxaline-2,3-dione and a solvent water molecule. Four atoms of the benzene ring are disordered over two sets of sites in a 0.706 (7):0.294 (7) ratio while the N-bound methyl groups are rotationally disordered with occupancy ratios of 0.78 (4):0.22 (4) and 0.76 (5):0.24 (5). In the crystal, molecules are linked by O—H...O and C—H...O hydrogen bonds into layers lying parallel to (10\overline{1}). The Hirshfeld surface analysis indicates that the most important contributions to the packing arrangement are due to H...H (51.3%) and O...H/H...O (28.6%) interactions. The molecular structure calculated by density functional theory is compared with the experimentally determined molecular structure, and the HOMO–LUMO energy gap has been calculated.


2019 ◽  
Vol 75 (7) ◽  
pp. 1079-1083
Author(s):  
Tanwawan Duangthongyou ◽  
Ramida Rattanakam ◽  
Kittipong Chainok ◽  
Songwut Suramitr ◽  
Thawatchai Tuntulani ◽  
...  

The title compound, C31H30N2S2O6, possesses crystallographically imposed twofold symmetry with the two C atoms of the central benzene ring and the C atom of its methyl substituent lying on the twofold rotation axis. The two dansyl groups are twisted away from the plane of methylphenyl bridging unit in opposite directions. The three-dimensional arrangement in the crystal is mainly stabilized by weak hydrogen bonds between the sulfonyl oxygen atoms and the hydrogen atoms from the N-methyl groups. Stacking of the dansyl group is not observed. From the DFT calculations, the HOMO–LUMO energy gap was found to be 2.99 eV and indicates n→π* and π→π* transitions within the molecule.


Author(s):  
Gamal Al Ati ◽  
Karim Chkirate ◽  
Joel T. Mague ◽  
Nadeem Abad ◽  
Redouane Achour ◽  
...  

The title molecule, C13H16N4O, adopts an angular conformation. In the crystal a layer structure is generated by N—H...O and N—H...N hydrogen bonds together with C—H...π(ring) interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (53.8%), H...C/C...H (21.7%), H...N/N...H (13.6%), and H...O/O...H (10.8%) interactions. The optimized structure calculated using density functional theory (DFT) at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO–LUMO energy gap is 5.0452 eV.


Author(s):  
Zainab Jabri ◽  
Karim Jarmoni ◽  
Tuncer Hökelek ◽  
Joel T. Mague ◽  
Safia Sabir ◽  
...  

The title compound, C24H30Br2N4O2, consists of a 2-(4-nitrophenyl)-4H-imidazo[4,5-b]pyridine entity with a 12-bromododecyl substituent attached to the pyridine N atom. The middle eight-carbon portion of the side chain is planar to within 0.09 (1) Å and makes a dihedral angle of 21.9 (8)° with the mean plane of the imidazolopyridine moiety, giving the molecule a V-shape. In the crystal, the imidazolopyridine units are associated through slipped π–π stacking interactions together with weak C—HPyr...ONtr and C—HBrmdcyl...ONtr (Pyr = pyridine, Ntr = nitro and Brmdcyl = bromododecyl) hydrogen bonds. The 12-bromododecyl chains overlap with each other between the stacks. The terminal –CH2Br group of the side chain shows disorder over two resolved sites in a 0.902 (3):0.098 (3) ratio. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H...H (48.1%), H...Br/Br...H (15.0%) and H...O/O...H (12.8%) interactions. The optimized molecular structure, using density functional theory at the B3LYP/ 6–311 G(d,p) level, is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


2013 ◽  
Vol 69 (10) ◽  
pp. 1196-1199 ◽  
Author(s):  
Andréanne Bolduc ◽  
Stéphane Dufresne ◽  
W. G. Skene

The title compound, C16H12N4S, forms a three-dimensional layered network structureviaintermolecular hydrogen bonding and π-stacking. The azomethine molecule adopts the thermodynamically stableEregioisomer and the pyridine substituents are antiperiplanar. The mean planes of the pyridine rings and the azomethine group to which they are connected are twisted by 27.27 (5) and 33.60 (5)°. The electrochemical energy gap of 2.3 eV based on the HOMO–LUMO energy difference is in agreement with the spectroscopically derived value.


2018 ◽  
Vol 74 (11) ◽  
pp. 1589-1594 ◽  
Author(s):  
Muhamad Fikri Zaini ◽  
Ibrahim Abdul Razak ◽  
Wan Mohd Khairul ◽  
Suhana Arshad

The asymmetric unit of the title compound, 2C17H12N2O3·H2O comprises two molecules of (E)-3-(1H-indol-2-yl)-1-(4-nitrophenyl)prop-2-en-1-one and a water molecule. The main molecule adopts an s-cis configuration with respect to the C=O and C=C bonds. The dihedral angle between the indole ring system and the nitro-substituted benzene ring is 37.64 (16)°. In the crystal, molecules are linked by O—-H...O and N—H...O hydrogen bonds, forming chains along [010]. In addition, weak C—H...O, C—H...π and π–π interactions further link the structure into a three-dimensional network. The optimized structure was generated theoretically via a density functional theory (DFT) approach at the B3LYP/6–311 G++(d,p) basis level and the HOMO–LUMO behaviour was elucidated to determine the energy gap. The obtained values of 2.70 eV (experimental) and 2.80 eV (DFT) are desirable for optoelectronic applications. The intermolecular interactions were quantified and analysed using Hirshfeld surface analysis.


2019 ◽  
Vol 75 (8) ◽  
pp. 1195-1198 ◽  
Author(s):  
Sergei Rigin ◽  
Marina Fonari

The molecule of the title compound, C18H10Br2S4, has a C-shape, with C s molecular symmetry. The dihedral angle between the planes of the dithiol and phenyl rings is 8.35 (9)°. In the crystal, molecules form helical chains along [001], the shortest interactions being π...S contacts within the helices. The intermolecular interactions were investigated by Hirshfeld surface analysis. Density functional theory (DFT) was used to calculate HOMO–LUMO energy levels of the title compound and its trans isomer.


2020 ◽  
Vol 76 (7) ◽  
pp. 1075-1079
Author(s):  
Nermin Kahveci Yagci ◽  
Md. Serajul Haque Faizi ◽  
Alev Sema Aydin ◽  
Necmi Dege ◽  
Onur Erman Dogan ◽  
...  

In the title compound, C15H15NO, the configuration of the C=N bond of the Schiff base is E, and an intramolecular O—H...N hydrogen bond is observed, forming an intramolecular S(6) ring motif. The phenol ring is inclined by 45.73 (2)° from the plane of the aniline ring. In the crystal, molecules are linked along the b axis by O—H...N and C—H...O hydrogen bonds, forming polymeric chains. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the packing arrangement are from H...H (56.9%) and H...C/C...H (31.2%) interactions. The density functional theory (DFT) optimized structure at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined molecular structure, and the HOMO–LUMO energy gap is provided. The crystal studied was refined as an inversion twin.


2020 ◽  
Vol 76 (10) ◽  
pp. 1551-1556
Author(s):  
Emine Berrin Cinar ◽  
Md. Serajul Haque Faizi ◽  
Nermin Kahveci Yagci ◽  
Onur Erman Dogan ◽  
Alev Sema Aydin ◽  
...  

The title compound, C15H14N2O3, was prepared by condensation of 2-hydroxy-5-methyl-benzaldehyde and 2-methyl-3-nitro-phenylamine in ethanol. The configuration of the C=N bond is E. An intramolecular O—H...N hydrogen bond is present, forming an S(6) ring motif and inducing the phenol ring and the Schiff base to be nearly coplanar [C—C—N—C torsion angle of 178.53 (13)°]. In the crystal, molecules are linked by C—H...O interactions, forming chains along the b-axis direction. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (37.2%), C...H (30.7%) and O...H (24.9%) interactions. The gas phase density functional theory (DFT) optimized structure at the B3LYP/ 6–311 G(d,p) level is compared to the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Author(s):  
Xiang-Zhen Meng ◽  
Dong Cheng

In the central fused ring system of the title compound, C51H42O5, all of the five-membered rings are in an envelope conformation. The dihedral angle between the two benzene rings in the fused ring system is 74.66 (7)°. In the crystal, molecules are linked by C—H...π interactions, forming a layer parallel to the ab plane. Each molecule acts as a double donor as well as a double acceptor of the C—H...π interactions. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (61.4%) and C...H/H...C (25.3%) contacts.


Sign in / Sign up

Export Citation Format

Share Document