scholarly journals Hirshfeld surface analysis and crystal structure of N-(2-methoxyphenyl)acetamide

Author(s):  
Mavise Yaman ◽  
Necmi Dege ◽  
Mzgin M. Ayoob ◽  
Awaz J. Hussein ◽  
Mohammed K. Samad ◽  
...  

The title compound, C9H11NO2, was obtained as unexpected product from the reaction of (4-{2-benzyloxy-5-[(E)-(3-chloro-4-methylphenyl)diazenyl]benzylidene}-2-phenyloxazol-5(4H)-one) with 2-methoxyaniline in the presence of acetic acid as solvent. The amide group is not coplanar with the benzene ring, as shown by the C—N—C—O and C—N—C—C torsion angles of −2.5 (3) and 176.54 (19)°, respectively. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (53.9%), C...H/H...C (21.4%), O...H/H...O (21.4%) and N...H/H...N (1.7%) interactions.

Author(s):  
Seher Meral ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Aysen Alaman Agar ◽  
Galyna G. Tsapyuk

In the molecule of the title compound, C16H20N2O6S2, the mid-point of the C—C bond of the central ethane moiety is located on a twofold rotation axis. In the crystal, molecules are linked by N—H...O hydrogen bonds into supramolecular chains propagating along the [101] direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (43.1%), O...H/H...O (40.9%), C...H/H...C (8.8%) and C...C (5.5%) interactions.


Author(s):  
Zeliha Atioğlu ◽  
S. Bindya ◽  
Mehmet Akkurt ◽  
C. S. Chidan Kumar

In the title compound, C15H10BrFO, the molecular structure consists of a 3-bromophenyl ring and a 4-fluorophenyl ring linked via a prop-2-en-1-one spacer. The 3-bromophenyl and 4-fluorophenyl rings make a dihedral angle of 48.90 (15)°. The molecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. In the crystal, molecules are linked by C—H...π interactions between the bromophenyl and fluorophenyl rings of molecules, resulting in a two-dimensional layered structure parallel to the ab plane. The molecular packing is stabilized by weak Br...H and F...H contacts, one of which is on the one side of each layer, and the second is on the other. The intermolecular interactions in the crystal packing were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are Cl...H/H...Cl (20.8%), followed by C...H/H...C (31.1%), H...H (21.7%), Br...H/H...Br (14.2%), F...H/H...F (9.8%), O...H/H...O (9.7%).


2018 ◽  
Vol 74 (10) ◽  
pp. 1513-1516 ◽  
Author(s):  
Sevgi Kansiz ◽  
Mustafa Macit ◽  
Necmi Dege ◽  
Galyna G. Tsapyuk

In the title Schiff base compound, C23H23NO, the two ring systems are twisted by 51.40 (11)° relative to each other. In the crystal, the molecules are connected by weak C—H...π interactions, generating a three-dimensional supramolecular structure. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (67.2%), C...H/H...C (26.7%) and C...C (2.5%) interactions.


2020 ◽  
Vol 76 (7) ◽  
pp. 1092-1095
Author(s):  
Ropak A. Sheakh Mohamad ◽  
Hashim J. Aziz ◽  
Wali M. Hamad

In the title compound, C27H28N2OS, the naphthalene unit is planar to within 0.015 (2) Å and makes a dihedral angle of 14.24 (16)° with the thiazole ring. The anisole ring is inclined to the thiazole ring by a dihedral angle of 13.18 (23)°. The torsion angle between the heptyl chain and the anisole ring is 61.1 (4)°. These dihedral and torsion angles render the molecule non-planar. In the crystal, molecules are linked by C—H...π interactions, forming zigzag chains that propagate parallel to the b axis. The roles of the various intermolecular interactions in the crystal packing were clarified by Hirshfeld surface analysis; the most important contributions are from H...H (51.5%) and C...H/H...C (31.8%) contacts.


2018 ◽  
Vol 74 (11) ◽  
pp. 1674-1677
Author(s):  
Ercan Aydemir ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Hasan Genc ◽  
Snizhana V. Gaidai

In the title compound, C13H14N4O·2H2O, the organic molecule is almost planar. In the crystal, the molecules are linked by O—H...O, N—H...O and O—H...N hydrogen bonds, forming a two-dimensional network parallel to (10\overline{1}). Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (55.4%), H...O/O...H (14.8%), H...C/C...H (11.7%) and H...N/N...H (8.3%) interactions.


Author(s):  
Kadriye Özkaraca ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Gulnar T. Suleymanova ◽  
...  

In the title compound, C16H14Cl2FN3, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short Cl...H contact, C—Cl...π and van der Waals interactions. The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H...H (33.3%), Cl...H/H...Cl (22.9%) and C...H/H...C (15.5%) interactions are the most important contributors towards the crystal packing.


2018 ◽  
Vol 74 (8) ◽  
pp. 1147-1150 ◽  
Author(s):  
Pinar Sen ◽  
Sevgi Kansiz ◽  
Irina A. Golenya ◽  
Necmi Dege

The title compound, C26H36N2O2, crystallizes in the phenol–imine form. In the molecule, there are intramolecular O—H...N hydrogen bonds forming S(6) ring motifs, and the two aromatic rings are inclined to each other by 37.9 (7)°. In the crystal, molecules are linked by pairs of weak C—H...O hydrogen bonds, forming inversion dimers. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (77.5%), H...C/C...H (16%), H...O/O...H (3.1%) and H...N/N...H (1.7%) interactions.


2020 ◽  
Vol 76 (7) ◽  
pp. 1122-1125
Author(s):  
Kadriye Özkaraca ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Gulnar T. Suleymanova ◽  
...  

In the tile compound, C17H17Cl2N3, the dihedral angle between the benzene rings is 62.73 (9)°. In the crystal, there are no classical hydrogen bonds. Molecules are linked by a pair of C—Cl...π interactions, forming an inversion dimer. A short intermolecular HL...HL contact [Cl...Cl = 3.2555 (9) Å] links the dimers, forming a ribbon along the c-axis direction. The Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that the most important contributions for the crystal packing are from H...H (45.4%), Cl...H/H...Cl (21.0%) and C...H/H...C (19.0%) contacts.


2020 ◽  
Vol 76 (7) ◽  
pp. 1033-1037
Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Sevinc H. Mukhtarova ◽  
Gulnar T. Suleymanova ◽  
...  

The title compound, C16H14Cl3N3, comprises three molecules of similar shape in the asymmetric unit. The crystal cohesion is ensured by intermolecular C—H...N and C—H...Cl hydrogen bonds in addition to C—Cl...π interactions. Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that Cl...H/H...Cl (33.6%), H...H (27.9%) and C...H/H...C (17.6%) are the most important contributors towards the crystal packing.


Author(s):  
Ballo Daouda ◽  
Nanou Tiéba Tuo ◽  
Tuncer Hökelek ◽  
Kangah Niameke Jean-Baptiste ◽  
Kodjo Charles Guillaume ◽  
...  

The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl...NPrmdn and N—HPrmdn...OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H...π interactions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (49.0%), H...C/C...H (35.8%) and H...O/O...H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl...NPrmdn and N—HPrmdn...OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Sign in / Sign up

Export Citation Format

Share Document