scholarly journals Crystal structure and Hirshfeld surface analysis of a copper(II) complex with ethylenediamine and non-coordinated benzoate

Author(s):  
Adnan M. Qadir ◽  
Sevgi Kansiz ◽  
Georgina M. Rosair ◽  
Necmi Dege ◽  
Turganbay S. Iskenderov

In the title compound, diaquabis(ethylenediamine-κ2 N,N′)copper(II) bis(2-nitrobenzoate), [Cu(C2H8N2)2(H2O)2](C7H4NO4)2, two diaquabis(ethylenediamine)copper(II) cations and four nitrobenzoate anions are present in the asymmetric unit. All four anions are `whole-molecule' disordered over two sets of sites. The major components have refined occupancies of 0.572 (13), 0.591 (9), 0.601 (9) and 0.794 (10). The CuII ions exhibit slightly distorted octahedral geometries. In the crystal, cations and anions are connected to each other via N—H...O and O—H...O hydrogen bonds, forming a two-dimensional network parallel to (200). The intermolecular contacts in the crystal were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are O...H/H...O (42.9%), followed by H...H (35.7%), C...H/H...C (14.2%), C...C (2.9%), C...O/O...C (2.2%), N...H/H...N (0.9%) and N...O/O...N (0.3%).

Author(s):  
Sevgi Kansiz ◽  
Adnan M. Qadir ◽  
Necmi Dege ◽  
Li Yongxin ◽  
Eiad Saif

The reaction of copper(II) sulfatepentahydrate with 2-nitrobenzoic acid and N,N,N′,N′-tetramethylethylenediamine (TMEDA) in basic solution produces the complex bis(2-nitrobenzoato-κO)(N,N,N′,N′-tetramethylethylenediamine-κ2 N,N′)copper(II), [Cu(C7H4NO4)2(C6H16N2)] or [Cu(2-nitrobenzoate)2(tmeda)]. Each carboxylate group of the 2-nitrobenzoate ligand is coordinated by CuII atom in a monodentate fashion and two TMEDA ligand nitrogen atoms are coordinate by the metal center, giving rise to a distorted square-planar coordination environment. In the crystal, metal complexes are linked by centrosymmetric C—H...O hydrogen bonds, forming ribbons via a R 2 2(10) ring motif. These ribbons are linked by further C—H...O hydrogen bonds, leading to two-dimensional hydrogen-bonded arrays parallel to the bc plane. Weak π–π stacking interactions provide additional stabilization of the crystal structure. Hirshfeld surface analysis, dnorm and two-dimensional fingerprint plots were examined to verify the contributions of the different intermolecular contacts within the supramolecular structure. The major interactions of the complex are O...H/H...O (44.9%), H...H (34%) and C...H (14.5%).


2018 ◽  
Vol 9 (4) ◽  
pp. 347-352
Author(s):  
Abdullah Aydin ◽  
Mehmet Akkurt ◽  
Zehra Tugce Gur ◽  
Erden Banoglu

The title compound, C13H12Cl2N2O2, crystallizes with six molecules in the asymmetric unit, such that, the 1H-pyrazole rings are essentially planar. The six molecules are stabilized by intramolecular C-H···N and C-H···Cl interactions and the crystal structure is stabilized by intermolecular C-H···O hydrogen bonds, forming molecular sheets into paralel to the (-1 1 0) plane. These sheets are connected to each other by C-H···O hydrogen bonds and C-H···π interactions. In the Hirshfeld surface analysis, the H···H, Cl···H/H···Cl, C···H/H···C, O···H/H···O, N···H/H···N, Cl···Cl, Cl···O/O···Cl interactions add to 95.8% of the intermolecular contacts of the Hirshfeld surface area. The remaining contributions (2.9%) correspond to Cl···C/C···Cl, C···O/O···C, O···O and N···N interactions. Crystal Data for C13H12Cl2N2O2 (M = 299.15 g/mol): Triclinic, space group P-1 (no. 2), a = 12.0505(10) Å, b = 12.3189(11) Å, c = 29.184(3) Å, α = 88.565(4)°, β = 89.296(4)°, γ = 76.833(4)°, V = 4217.0(7) Å3, Z = 12, T = 296(2) K, μ(MoKα) = 0.460 mm-1, Dcalc = 1.414 g/cm3, 83073 reflections measured (2.8° ≤ 2Θ ≤ 47°), 12426 unique (Rint = 0.0411, Rsigma = 0.0235) which were used in all calculations. The final R1 was 0.0662 (I > 2σ(I)) and wR2 was 0.2481 (all data).


2018 ◽  
Vol 74 (11) ◽  
pp. 1674-1677
Author(s):  
Ercan Aydemir ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Hasan Genc ◽  
Snizhana V. Gaidai

In the title compound, C13H14N4O·2H2O, the organic molecule is almost planar. In the crystal, the molecules are linked by O—H...O, N—H...O and O—H...N hydrogen bonds, forming a two-dimensional network parallel to (10\overline{1}). Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (55.4%), H...O/O...H (14.8%), H...C/C...H (11.7%) and H...N/N...H (8.3%) interactions.


Author(s):  
Afef Guesmi ◽  
Sofian Gatfaoui ◽  
Thierry Roisnel ◽  
Houda Marouani

The crystal structure of the title salt {systematic name: [1,3-phenylenebis(methylene)]bis(azanium) sulfate}, C8H14N22+·SO42−, consists of infinite (100) sheets of alternating organic and inorganic entities Them-xylylenediaminium cations are linked to the sulfate anions by N—H...O and asymmetric bifurcated N—H...(O,O) hydrogen bonds, generating a three-dimensional network. A weak C—H...O interaction also occurs. The Hirshfeld surface analysis and the two-dimensional fingerprint maps indicate that the packing is dominated by H...O/O...H and H...H contacts.


Author(s):  
Juhyeon Park ◽  
Seung Heon Lee ◽  
Myong Yong Choi ◽  
Cheol Joo Moon ◽  
Tae Ho Kim

The title compound, C22H22N2O4S2, was synthesized by the reaction of 1,4,5,8-naphthalenetetracarboxylic dianhydride with 3-(methylsulfanyl)propylamine. The whole molecule is generated by an inversion operation of the asymmetric unit. This molecule has an anti form with the terminal methylthiopropyl groups above and below the aromatic diimide plane, where four intramolecular C—H...O and C—H...S hydrogen bonds are present and the O...H...S angle is 100.8°. DFT calculations revealed slight differences between the solid state and gas phase structures. In the crystal, C—H...O and C—H...S hydrogen bonds link the molecules into chains along the [2\overline20] direction. adjacent chains are interconnected by π–π interactions, forming a two-dimensional network parallel to the (001) plane. Each two-dimensional layer is further packed in an ABAB sequence along the c-axis direction. Hirshfeld surface analysis shows that van der Waals interactions make important contributions to the intermolecular contacts. The most important contacts found in the Hirshfeld surface analysis are H...H (44.2%), H...O/O...H (18.2%), H...C/C...H (14.4%), and H...S/S...H (10.2%).


Author(s):  
Ponnusamy Poornima Devi ◽  
Doraisamyraja Kalaivani

The asymmetric unit of the title salt C9H8N+·C12H9N4O7−, which exhibits anticonvulsant and hypnotic activities, comprises one anion and one cation interactingviaan N—H...O hydrogen bond. In the anion, the six-membered rings are inclined each to other at 42.78 (9)°. The nitro groups in the 2,4-dinitrophenyl fragment attached to the aromatic ring in theparaandorthopositions are twisted from its plane by 3.1 (2) and 45.5 (2)°, respectively. In the crystal, weak C—H...O hydrogen bonds consolidate the crystal packing. The Hirshfeld surface analysis revealed that O...H/H...O intermolecular contacts predominate in the crystal packing.


2020 ◽  
Vol 76 (7) ◽  
pp. 1033-1037
Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Sevinc H. Mukhtarova ◽  
Gulnar T. Suleymanova ◽  
...  

The title compound, C16H14Cl3N3, comprises three molecules of similar shape in the asymmetric unit. The crystal cohesion is ensured by intermolecular C—H...N and C—H...Cl hydrogen bonds in addition to C—Cl...π interactions. Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that Cl...H/H...Cl (33.6%), H...H (27.9%) and C...H/H...C (17.6%) are the most important contributors towards the crystal packing.


Author(s):  
Nasiba Pirnazarova ◽  
Ubaydullo Yakubov ◽  
Sevara Allabergenova ◽  
Akmaljon Tojiboev ◽  
Kambarali Turgunov ◽  
...  

The asymmetric unit of the title compound, C16H13N3OS, comprises two molecules (A and B) with similar conformations that differ mainly in the orientation of the phenyl group relative to the rest of the molecule, as expressed by the Cthioamide—Nthioamide—Cphenyl—Cphenyl torsion angle of 49.3 (3)° for molecule A and of 5.4 (3)° for molecule B. In the crystal, two intermolecular N—H...N hydrogen bonds lead to the formation of a dimer with R 2 2(10) graph-set notation. A Hirshfeld surface analysis revealed that H...H interactions are the most important intermolecular interactions, contributing 40.9% to the Hirshfeld surface.


Author(s):  
Ignacio Chi-Duran ◽  
Zouaoui Setifi ◽  
Fatima Setifi ◽  
Christian Jelsch ◽  
Bernd Morgenstern ◽  
...  

The title compound, [Ni(C10H8N2)3](C9H5N4O)2·2H2O, crystallizes as a racemic mixture in the monoclinic space group C2/c. In the crystal, the 1,1,3,3-tetracyano-2-ethoxypropenide anions and the water molecules are linked by O—H...N hydrogen bonds, forming chains running along the [010] direction. The bpy ligands of the cation are linked to the chain via C—H...π(cation) interactions involving the CH3 group. The intermolecular interactions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots.


Author(s):  
Dmitriy F. Mertsalov ◽  
Kseniia A. Alekseeva ◽  
Magrycheva S. Daria ◽  
Maxim E. Cheshigin ◽  
Sevim Türktekin Çelikesir ◽  
...  

The asymmetric unit of the title compound, C15H12Br2F3NO2, consists of two crystallographically independent molecules. In both molecules, the pyrrolidine and tetrahydrofuran rings adopt an envelope conformation. In the crystal, molecule pairs generate centrosymmetric rings with R 2 2(8) motifs linked by C—H...O hydrogen bonds. These pairs of molecules form a tetrameric supramolecular motif, leading to molecular layers parallel to the (100) plane by C—H...π and C—Br...π interactions. Interlayer van der Waals and interhalogen interactions stabilize molecular packing. The F atoms of the CF3 groups of both molecules are disordered over two sets of sites with refined site occupancies of 0.60 (3)/0.40 (3) and 0.640 (15)/0.360 (15). The most important contributions to the surface contacts of both molecules are from H...H (23.8 and 22.4%), Br...H/H...Br (18.3 and 12.3%), O...H/H...O (14.3 and 9.7%) and F...H/H...F (10.4 and 19.1%) interactions, as concluded from a Hirshfeld surface analysis.


Sign in / Sign up

Export Citation Format

Share Document