scholarly journals Crystal structure and Hirshfeld surface analysis of (E)-4-{2,2-dichloro-1-[(3,5-dimethylphenyl)diazenyl]ethenyl}-N,N-dimethylaniline

2020 ◽  
Vol 76 (8) ◽  
pp. 1251-1254
Author(s):  
Kadriye Özkaraca ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Gulnar T. Suleymanova ◽  
...  

In the title compound, C18H19Cl2N3, the planes of the benzene rings subtend a dihedral angle of 77.07 (10)°. In the crystal, molecules are associated into inversion dimers via short Cl...Cl contacts [3.3763 (9) Å]. A Hirshfeld surface analysis indicates that the most important contact percentages for the different types of interactions are H...H (43.9%), Cl...H/H...Cl (22.9%), C...H/H...C (20.8%) and N...H/H...N (8.0%).

Author(s):  
Ignez Caracelli ◽  
Julio Zukerman-Schpector ◽  
Henrique J. Traesel ◽  
Paulo R. Olivato ◽  
Mukesh M. Jotani ◽  
...  

The title compound, C15H13ClO2S, comprises (4-chlorophenyl)sulfanyl, benzaldehyde and methoxy residues linked at a chiral methine-C atom (the crystal is racemic). A twist in the methine-C—C(carbonyl) bond [O—C—C—O torsion angle = 19.3 (7)°] leads to a dihedral angle of 22.2 (5)° between the benzaldehyde and methine+methoxy residues. The chlorobenzene ring is folded to lie over the O atoms, with the dihedral angle between the benzene rings being 42.9 (2)°. In the crystal, the carbonyl-O atom accepts two C—H...O interactions with methyl- and methine-C—H atoms being the donors. The result is an helical supramolecular chain aligned along the c axis; chains pack with no directional interactions between them. An analysis of the Hirshfeld surface points to the important contributions of weak H...H and C...C contacts to the molecular packing.


Author(s):  
Rajesh Kumar ◽  
Shafqat Hussain ◽  
Khalid M. Khan ◽  
Shahnaz Perveen ◽  
Sammer Yousuf

In the title compound, C16H10Cl2N2O2S, the dihedral angles formed by the chloro-substituted benzene rings with the central oxadiazole ring are 6.54 (9) and 6.94 (8)°. In the crystal, C—H...N hydrogen bonding links the molecules into undulating ribbons running parallel to thebaxis. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are the H...C (18%), H...H (17%), H...Cl (16.6%), H...O (10.4%), H...N (8.9%) and H...S (5.9%) interactions.


2021 ◽  
Vol 77 (10) ◽  
pp. 1043-1047
Author(s):  
Nazariy T. Pokhodylo ◽  
Yurii Slyvka ◽  
Volodymyr Pavlyuk

The title compound, C15H18N4O2, was obtained via a two-step synthesis (Dimroth reaction and amidation) for anticancer activity screening and was selected from a 1H-1,2,3-triazole-4-carboxamide library. The cyclopropyl ring is oriented almost perpendicular to the benzene ring [dihedral angle = 87.9 (1)°], while the dihedral angle between the mean plane of the cyclopropyl ring and that of the triazole ring is 55.6 (1)°. In the crystal, the molecules are linked by O—H...O and C—H...N interactions into infinite ribbons propagating in the [001] direction, which are interconnected by weak C—H...O interactions into layers. The intermolecular interactions were characterized via Hirshfeld surface analysis, which indicated that the largest fingerprint contact percentages are H...H (55.5%), N...H/H...N (15.4%), C...H/H...C (13.2%) and O...H/H...O (12.9%).


2018 ◽  
Vol 74 (12) ◽  
pp. 1746-1750 ◽  
Author(s):  
Asmaa Saber ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Brahim Hni ◽  
Joel T. Mague ◽  
...  

In the title compound, C21H20N4O2, the intramolecular C—H...O hydrogen-bonded benzodiazolone moieties are planar to within 0.017 (1) and 0.026 (1) Å, and are oriented at a dihedral angle of 57.35 (3)°. In the crystal, two sets of intermolecular C—H...O hydrogen bonds generate layers parallel to the bc plane. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (51.8%), H...C/C...H (30.7%) and H...O/O...H (11.2%) interactions.


2020 ◽  
Vol 76 (9) ◽  
pp. 1472-1475
Author(s):  
Emine Berrin Çınar ◽  
Semanur Yeşilbağ ◽  
Onur Erman Doğan ◽  
Erbil Ağar ◽  
Necmi Dege ◽  
...  

Molecules of the title compound, C16H16N2O2, occupy special positions on the twofold rotation axes. The heterocyclic ring adopts a slightly twisted envelope conformation with one of the two junction carbon atoms as the flap. The mean planes through the two halves of the molecule form a dihedral angle of 72.01 (2)°. In the crystal, molecules are linked by pairs of C—H...O and N—H...C contacts into layers parallel to (100). H...H contacts make the largest contribution to the Hirshfeld surface (58.9%).


2019 ◽  
Vol 75 (12) ◽  
pp. 1861-1865
Author(s):  
Trung Vu Quoc ◽  
Duong Tran Thi Thuy ◽  
Thanh Phung Ngoc ◽  
Manh Vu Quoc ◽  
Hien Nguyen ◽  
...  

In the title compound, C17H21NO4S, the 1,4-dihydropyridine ring has an envelope conformation with the Csp 3 atom at the flap. The thiophene ring is nearly perpendicular to the best plane through the 1,4-dihydropyridine ring, the dihedral angle being 82.19 (13)°. In the crystal, chains running along the b-axis direction are formed through N—H...O interactions between the 1,4-dihydropyridine N atom and one of the O atoms of the ester groups. Neighbouring chains are linked by C—H...O and C—H...π interactions. A Hirshfeld surface analysis shows that the most prominent contributuion to the surface contacts are H...H contacts (55.1%).


2020 ◽  
Vol 76 (7) ◽  
pp. 1122-1125
Author(s):  
Kadriye Özkaraca ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Gulnar T. Suleymanova ◽  
...  

In the tile compound, C17H17Cl2N3, the dihedral angle between the benzene rings is 62.73 (9)°. In the crystal, there are no classical hydrogen bonds. Molecules are linked by a pair of C—Cl...π interactions, forming an inversion dimer. A short intermolecular HL...HL contact [Cl...Cl = 3.2555 (9) Å] links the dimers, forming a ribbon along the c-axis direction. The Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that the most important contributions for the crystal packing are from H...H (45.4%), Cl...H/H...Cl (21.0%) and C...H/H...C (19.0%) contacts.


2018 ◽  
Vol 74 (11) ◽  
pp. 1628-1632
Author(s):  
Mavise Yaman ◽  
Ercan Aydemir ◽  
Necmi Dege ◽  
Erbil Agar ◽  
Turganbay S. Iskenderov

The title compound, C13H8Br2FN3O3, is nearly planar with a dihedral angle of 10.6 (4)° between the two benzene rings. Intramolecular N—H...O and O—H...N hydrogen bonds occur. In the crystal, the molecules are linked by weak C—H...O and C—H...Br hydrogen bonds. The roles of the intermolecular interactions in the crystal packing were clarified using Hirshfeld surface analysis.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Gulnar T. Suleymanova ◽  
Khanim N. Bagirova ◽  
...  

In the title compound, C14H8Cl2FN3O2, the 4-fluorophenyl ring and the nitro-substituted benzene ring form a dihedral angle of 63.29 (8)°. In the crystal, molecules are linked by C—H...O hydrogen bonds into chains running parallel to the c axis. The crystal packing is further stabilized by C—Cl...π, C—F...π and N—O...π interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H...O/O...H (15.5%), H...H (15.3%), Cl...H/H...Cl (13.8%), C...H/H...C (9.5%) and F...H/H...F (8.2%) interactions.


Author(s):  
Dmitriy F. Mertsalov ◽  
Kseniia A. Alekseeva ◽  
Magrycheva S. Daria ◽  
Maxim E. Cheshigin ◽  
Sevim Türktekin Çelikesir ◽  
...  

The asymmetric unit of the title compound, C15H12Br2F3NO2, consists of two crystallographically independent molecules. In both molecules, the pyrrolidine and tetrahydrofuran rings adopt an envelope conformation. In the crystal, molecule pairs generate centrosymmetric rings with R 2 2(8) motifs linked by C—H...O hydrogen bonds. These pairs of molecules form a tetrameric supramolecular motif, leading to molecular layers parallel to the (100) plane by C—H...π and C—Br...π interactions. Interlayer van der Waals and interhalogen interactions stabilize molecular packing. The F atoms of the CF3 groups of both molecules are disordered over two sets of sites with refined site occupancies of 0.60 (3)/0.40 (3) and 0.640 (15)/0.360 (15). The most important contributions to the surface contacts of both molecules are from H...H (23.8 and 22.4%), Br...H/H...Br (18.3 and 12.3%), O...H/H...O (14.3 and 9.7%) and F...H/H...F (10.4 and 19.1%) interactions, as concluded from a Hirshfeld surface analysis.


Sign in / Sign up

Export Citation Format

Share Document