carbonyl bond
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 6)

H-INDEX

21
(FIVE YEARS 1)

Author(s):  
Muhammad Zahid ◽  
Jiang Li ◽  
Ahmed Ismail ◽  
Francisco Zaera ◽  
Yujun Zhu

PtCo/MIL-101(Cr) with high uniform dispersion Pt–Co IMNs synthesized by a polyol reduction method show higher activity for selective catalytic hydrogenation of α,β-unsaturated aldehydes due to the synergistic effect of PtCo and MIL-101(Cr) support.


2021 ◽  
Author(s):  
Peng Zhou ◽  
Yu Emily Chen ◽  
Peng Luan ◽  
Xiaolong Zhang ◽  
Ziliang Yuan ◽  
...  

Furfural is regarded as one of the most promising bio-based feedstocks in the bio-refinery industry. Selective hydrogenation of the carbonyl bond in furfural plays a vital role in its conversion...


2020 ◽  
Vol 86 (1) ◽  
pp. 36-59
Author(s):  
Leon Shteynberg

The catalytic production of benzanilide by the interaction of benzoic acid with aniline is an important model process recently intensively developed in the field of the concept of «green chemistry», direct catalytic amidation, and its study is an urgent scientific and practical task.  To solve this problem, the effect of substituents in the aniline core on the catalysis by polybut-oxytitanates on acylation of substituted  anilines  by benzoic  acid  was  studied. The rate constants of this the second-order reaction (the first with respect to substituted aniline and benzoic acid; boiling ortho-xylene, 145 °С, nitrogen flow)  are well correlated according to the Hammett equation with three straight lines for individual groups of substituents with ρ = –0.86 (electron donors), 1.12 (weak electron acceptors),  –2.83 (strong  electron  acceptors). To explain this dependence, a variant of the catalytic amidation mechanism is proposed, which takes into account the formation of titanium butoxybenzoates in the first minutes of the reaction — a true  amidation  catalyst;  coordination (polarization of the carbonyl bond in the interaction with the catalyst titanium atom) and acid (polarization of the carbonyl bond in the interaction with the complex of the formed substitu- ted benzanilide with the titanium butoxyben-zoates)  catalysis   routes. Inhibition of the catalytic reaction is associated with the presence in the mass of water, relative excess of  benzoic acid and a possible amide–imide tautomerism of substituted benzanilides, accompanied by the interaction of the imide form of the latter with titanium  butoxybenzoates, which does not lead to the route of acid catalysis. The rate constants for catalytic acylation of substituted anilines, containing  electron-donating substituents, with benzoic acid in the  air are correlated according to the Hammett equation by a straight line segment with ρ = 0.99, which is associated with the predominant influence  of  the  oxidation  processes  of  the  corresponding   amines. Catalytic acylation under comparable conditions of substituted anilines, containing electron-withdrawing substituents, oxidation processes due to atmospheric  oxygen  have  little  effect  on.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Galo Cárdenas-Triviño ◽  
Nelson Linares-Bermúdez ◽  
Mario Núñez-Decap

Global pollution has caused a real interest on the use of biodegradable materials to the sustainable development. PLA and PHB are interesting materials due to their properties and their biodegradability, and their blends in different ratios are proposed in this study; also, Ag and Cu nanoparticles were incorporated to observe possible enhances and advantages on it. Blends were characterized through FTIR, TGA, tensile, and DMA tests. Theoretically, results obtained were coherent; FTIR spectra showed a characteristic band (around 1740 cm-1) corresponding to the carbonyl bond at different intensities for each blend which is an evidence of the polymers. Likewise, TGA results showed different marked decomposition points (except for PLA/PHB 70/30), which is another indicative parameter. Regarding tensile tests, PLA/PHB/nanoparticle (NP) blends showed higher Young modulus value action improving exponentially some properties and they can act as a powerful complementary component even in small amounts. The NPs incorporated exhibited clustering due to the blending process with ranges from 93.24 nm for Cu to 123.71 nm for Ag.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Bogdan Kurpil ◽  
Katharina Otte ◽  
Artem Mishchenko ◽  
Paolo Lamagni ◽  
Wojciech Lipiński ◽  
...  

Author(s):  
Ignez Caracelli ◽  
Julio Zukerman-Schpector ◽  
Henrique J. Traesel ◽  
Paulo R. Olivato ◽  
Mukesh M. Jotani ◽  
...  

The title compound, C15H13ClO2S, comprises (4-chlorophenyl)sulfanyl, benzaldehyde and methoxy residues linked at a chiral methine-C atom (the crystal is racemic). A twist in the methine-C—C(carbonyl) bond [O—C—C—O torsion angle = 19.3 (7)°] leads to a dihedral angle of 22.2 (5)° between the benzaldehyde and methine+methoxy residues. The chlorobenzene ring is folded to lie over the O atoms, with the dihedral angle between the benzene rings being 42.9 (2)°. In the crystal, the carbonyl-O atom accepts two C—H...O interactions with methyl- and methine-C—H atoms being the donors. The result is an helical supramolecular chain aligned along the c axis; chains pack with no directional interactions between them. An analysis of the Hirshfeld surface points to the important contributions of weak H...H and C...C contacts to the molecular packing.


Author(s):  
Christian Reitsamer ◽  
Inge Schlapp-Hackl ◽  
Gabriel Partl ◽  
Walter Schuh ◽  
Holger Kopacka ◽  
...  

After the successful creation of the newly designed PCP carbodiphosphorane (CDP) ligand [Reitsamer et al. (2012). Dalton Trans. 41, 3503–3514; Stallinger et al. (2007). Chem. Commun. pp. 510–512], the treatment of this PCP pincer system with the transition metal iridium and further the analysis of the structures by single-crystal diffraction and by NMR spectroscopy were of major interest. Two different iridium complexes, namely (bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane-κ3 P,C,P′)carbonylchloridohydridoiridium(III) chloride dichloromethane trisolvate, [IrIII(CO){C(dppm)2-κ3 P,C,P′}ClH]Cl·3CH2Cl2 (1) and the closely related (bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methanide(1+)-κ3 P,C,P′)carbonylchloridohydridoiridium(III) dichloride–hydrochloric acid–water (1/2/5.5), [IrIII(CO){CH(dppm)2-κ3 P,C,P′)ClH]Cl}2 (2), have been designed and both complexes show a slightly distorted octahedral coordinated IrIII centre. The PCP pincer ligand system is arranged in a meridional manner, the CO ligand is located trans to the central PCP carbon and a hydride and chloride are located perpendicular above and below the P2C2 plane. With an Ir—CCDP distance of 2.157 (5) Å, an Ir—CO distance of 1.891 (6) Å and a quite short C—O distance of 1.117 (7) Å, complex 1 presents a strong carbonyl bond. Complex 2, the corresponding CH acid of 1, shows an additionally attached proton at the carbodiphosphorane carbon atom located antiperiplanar to the hydride of the metal centre. In comparison with complex 1, the Ir—CCDP distance of 2.207 (3) Å is lengthened and the Ir—C—O values indicate a weaker trans influence of the central carbodiphosphorane carbon atom.


Author(s):  
José A. Carmona-Negrón ◽  
Mariola M. Flores-Rivera ◽  
Zaibeth Díaz-Reyes ◽  
Curtis E. Moore ◽  
Arnold L. Rheigold ◽  
...  

A new ferrocene complex, 16-ferrocenylmethyl-3β-hydroxyestra-1,3,5(10)-trien-17-one dimethyl sulfoxide monosolvate, [Fe(C5H5)(C24H27O2)]·C2H6OS, has been synthesized and structurally characterized by single-crystal X-ray diffraction techniques. The molecule crystallizes in the space groupP21with one molecule of dimethyl sulfoxide. A hydrogen bond links the phenol group and the dimethyl sulfoxide O atom, with an O...O distance of 2.655 (5) Å. The ferrocene group is positioned in the β face of the estrone moiety, with an O—C—C—C torsion angle of 44.1 (5)°, and the carbonyl bond length of the hormone moiety is 1.216 (5) Å, typical of a C=O double bond. The average Fe—C bond length of the substituted Cp ring [Fe—C(Cp*)] is similar to that of the unsubstituted one [Fe—C(Cp)],i.e.2.048 (3)versus2.040 (12) Å. The structure of the complex is compared with those of estrone and ethoxymethylestrone.


2016 ◽  
Vol 358 (7) ◽  
pp. 1110-1118 ◽  
Author(s):  
Damien Jardel ◽  
Clotilde Davies ◽  
Frédéric Peruch ◽  
Stéphane Massip ◽  
Brigitte Bibal

Sign in / Sign up

Export Citation Format

Share Document