scholarly journals Crystal structures of 2-amino-2-oxoethyl 4-bromobenzoate, 2-amino-2-oxoethyl 4-nitrobenzoate and 2-amino-2-oxoethyl 4-aminobenzoate monohydrate

2020 ◽  
Vol 76 (12) ◽  
pp. 1805-1809
Author(s):  
F. A. Sapayev ◽  
R. Ya. Okmanov ◽  
T. S. Kholikov ◽  
Kh. S. Tadjimukhamedov ◽  
B. Tashkhodjaev

The title molecules were synthesized by the reaction of 4-substituted sodium benzoates with chloroacetic acid amide in the presence of dimethylformamide. The yields of 2-amino-2-oxoethyl 4-bromobenzoate, C9H8BrNO3, I, 2-amino-2-oxoethyl 4-nitrobenzoate, C9H8N2O5, II, and 2-amino-2-oxoethyl 4-aminobenzoate monohydrate, C9H10N2O3·H2O, III, are 86, 78 and 88%, respectively. The low yield of II is explained by the reduced reactivity of the molecule in a nucleophilic exchange reaction because of the negative induction and negative mesomeric effects of the nitro group on the benzene ring. Single crystals were obtained from the products under the same (temperature and solvent) conditions. In the case of III, the crystals formed as a monohydrate. In all three crystal structures, the same type of intermolecular N—H...O hydrogen bonds are observed, but the molecules differ in some torsion angles as well as in the dihedral angles between the mean planes of the benzene rings and the amide groups.

2014 ◽  
Vol 70 (12) ◽  
pp. o1252-o1252 ◽  
Author(s):  
Rodolfo Moreno-Fuquen ◽  
Diego F. Sánchez ◽  
Javier Ellena

In the title compound, C10H6N4O5S, the mean plane of the non-H atoms of the central amide fragment C—N—C(=O)—C [r.m.s. deviation = 0.0294 Å] forms dihedral angles of 12.48 (7) and 46.66 (9)° with the planes of the thiazole and benzene rings, respectively. In the crystal, molecules are linked by N—H...O hydrogen bonds, forming chains along [001]. In addition, weak C—H...O hydrogen bonds link these chains, forming a two-dimensional network, containingR44(28) ring motifs parallel to (100).


Author(s):  
H. Purandara ◽  
Sabine Foro ◽  
B. Thimme Gowda

The title acylhydrazone derivative, C17H19N3O3S, containing an amino acid moiety and electron-donating substituents attached to both the phenyl rings, crystallized with two independent molecules (AandB) in the asymmetric unit. The molecules are bent at the S atom, with C—SO2—NH—CH2torsion angles of −67.3 (2) and 67.7 (3)° in moleculesAandB, respectively. Further, the dihedral angles between the sulfonylglycine segments and thep-toluenesulfonyl rings are 76.1 (1) and 85.8 (1)° in moleculesAandB, respectively. The central hydrazone segments and the toluene rings attached to them are almost co-planar with their mean planes being inclined to one another by 5.2 (2) (moleculeA) and 2.9 (2)° (moleculeB). The dihedral angles between the benzene rings are 86.83 (12) (moleculeA) and 74.00 (14)° (moleculeB). In the crystal, theAmolecules are linked by a pair of N—H...O hydrogen bonds, forming inversion dimers with anR22(8) ring motif. The dimers are linkedviathree N—H...O hydrogen bonds involving theBmolecules, forming chains along [100] and enclosingR22(12) andR44(16) ring motifs. The chains are linkedviaC—H...O hydrogen bonds and a C—H...π interaction, forming sheets parallel to (010). There is a further C—H...π interaction and a slipped parallel π–π interaction [inter-centroid distance = 3.8773 (16) Å] between the sheets, leading to the formation of a three-dimensional framework.


2015 ◽  
Vol 71 (9) ◽  
pp. 1036-1041
Author(s):  
S. Gopinath ◽  
K. Sethusankar ◽  
Bose Muthu Ramalingam ◽  
Arasambattu K. Mohanakrishnan

The title compounds, C17H13NO2S, (I), C17H13NO3S, (II), and C24H17ClN2O5S·CHCl3, (III), are indole derivatives. Compounds (I) and (II) crystalize with two independent molecules in the asymmetric unit. The indole ring systems in all three structures deviate only slightly from planarity, with dihedral angles between the planes of the pyrrole and benzene rings spanning the tight range 0.20 (9)–1.65 (9)°. These indole ring systems, in turn, are almost orthogonal to the phenylsulfonyl rings [range of dihedral angles between mean planes = 77.21 (8)–89.26 (8)°]. In the three compounds, the molecular structure is stabilized by intramolecular C—H...O hydrogen bonds, generatingS(6) ring motifs with the sulfone O atom. In compounds (I) and (II), the two independent molecules are linked by C—H...O hydrogen bonds and C—H...π interactions, while in compound (III), the molecules are linked by C—H...O hydrogen bonds, generatingR22(22) inversion dimers.


2014 ◽  
Vol 70 (2) ◽  
pp. o150-o151 ◽  
Author(s):  
Suchada Chantrapromma ◽  
Nawong Boonnak ◽  
Jirapa Horkaew ◽  
Ching Kheng Quah ◽  
Hoong-Kun Fun

The title compound crystallizes as a hemihydrate, C18H20N2O5·0.5H2O. The molecule exists in anEconformation with respect to the C=N imine bond. The 4-methoxyphenyl unit is disordered over two sets of sites with a refined occupancy ratio of 0.54 (2):0.46 (2). The dihedral angles between the benzene rings are 29.20 (9) and 26.59 (9)°, respectively, for the major and minor components of the 4-methoxy-substituted ring. All methoxy substituents lie close to the plane of the attached benzene rings [the Cmethyl—O—C—C torsion angles range from −4.0 (12) to 3.9 (2)°]. In the crystal, the components are linked into chains propagating along [001]viaN—H...O and O—H...O hydrogen bonds and weak C—H...O interactions.


2013 ◽  
Vol 69 (12) ◽  
pp. o1806-o1806 ◽  
Author(s):  
Rodolfo Moreno-Fuquen ◽  
Geraldine Hernandez ◽  
Javier Ellena ◽  
Carlos A. De Simone ◽  
Juan C. Tenorio

In the title compound, C14H8ClNO5, the benzene rings form a dihedral angle of 19.55 (9)°. The mean plane of the central ester group [r.m.s. deviation = 0.024 Å] forms dihedral angles of 53.28 (13) and 36.93 (16)°, respectively, with the nitro- and chloro-substituted rings. The nitro group forms a dihedral angle of 19.24 (19)° with the benzene ring to which it is attached. In the crystal, molecules are linked by weak C—H...O hydrogen bonds, formingC(7) chains, which run along [100].


Author(s):  
Narsimha Reddy Penthala ◽  
Jaishankar K. B. Yadlapalli ◽  
Sean Parkin ◽  
Peter A. Crooks

(Z)-5-[2-(Benzo[b]thiophen-2-yl)-1-(3,5-dimethoxyphenyl)ethenyl]-1H-tetrazole methanol monosolvate, C19H16N4O2S·CH3OH, (I), was prepared by the reaction of (Z)-3-(benzo[b]thiophen-2-yl)-2-(3,5-dimethoxyphenyl)acrylonitrile with tributyltin azideviaa [3 + 2]cycloaddition azide condensation reaction. The structurally related compound (Z)-5-[2-(benzo[b]thiophen-3-yl)-1-(3,4,5-trimethoxyphenyl)ethenyl]-1H-tetrazole, C20H18N4O3S, (II), was prepared by the reaction of (Z)-3-(benzo[b]thiophen-3-yl)-2-(3,4,5-trimethoxyphenyl)acrylonitrile with tributyltin azide. Crystals of (I) have two molecules in the asymmetric unit (Z′ = 2), whereas crystals of (II) haveZ′ = 1. The benzothiophene rings in (I) and (II) are almost planar, with r.m.s deviations from the mean plane of 0.0084 and 0.0037 Å in (I) and 0.0084 Å in (II). The tetrazole rings of (I) and (II) make dihedral angles with the mean planes of the benzothiophene rings of 88.81 (13) and 88.92 (13)° in (I), and 60.94 (6)° in (II). The dimethoxyphenyl and trimethoxyphenyl rings make dihedral angles with the benzothiophene rings of 23.91 (8) and 24.99 (8)° in (I) and 84.47 (3)° in (II). In both structures, molecules are linked into hydrogen-bonded chains. In (I), these chains involve both tetrazole and methanol, and are parallel to thebaxis. In (II), molecules are linked into chains parallel to theaaxis by N—H...N hydrogen bonds between adjacent tetrazole rings.


2012 ◽  
Vol 68 (10) ◽  
pp. o408-o412 ◽  
Author(s):  
Ashokkumar Subashini ◽  
Kandasamy Ramamurthi ◽  
Helen Stoeckli-Evans

The 4-chloro- [C14H11ClN2O2, (I)], 4-bromo- [C14H10BrN2O2, (II)] and 4-diethylamino- [C18H21N3O2, (III)] derivatives of benzylidene-4-hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond isE. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two-dimensional slab-like networks extending in theaandcdirections are formedviaN—H...O and O—H...O hydrogen bonds. The molecules stack head-to-tailviaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two-dimensional networks extending in thebandcdirections are formedviaN—H...O and O—H...O hydrogen bonds. The molecules stack head-to-headviaπ–π interactions involving inversion-related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].


IUCrData ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Sanae Lahmidi ◽  
El Mokhtar Essassi ◽  
Mohammed Benchidmi ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

The crystal of the title salt hydrate, C2H6N5+·C7H4NO4−·2H2O, is built up from a 3,5-diamino-4H-1,2,4-triazol-1-ium cation linked to a 4-nitrobenzoate anion and to two water molecules through strong hydrogen bonds. The triazolyl ring is virtually planar, with the maximum deviation from the mean plane being 0.003 (1) Å. Small twists are noted in the anion with the dihedral angles between the ring and carboxylate and nitro groups being 7.82 (13) and 9.10 (15)°, respectively. In the crystal, molecules are linked by N—H...O, N—H...N, O—H...O and C—H...O interactions, forming layers parallel to (-101). The sheets are linked by O—H...O hydrogen bonds and π–π interactions between triazole and benzene rings [inter-centroid separation = 3.4967 (8) Å] to form a three-dimensional structure.


2014 ◽  
Vol 70 (6) ◽  
pp. o681-o682
Author(s):  
Channappa N. Kavitha ◽  
Manpreet Kaur ◽  
Jerry P. Jasinski ◽  
H. S. Yathirajan

In the cation of the title salt {systematic name: 4-[bis(4-fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium pyridine-4-carboxylate}, C26H27F2N2+·C6H4NO2−, the piperazine ring is in a slightly distorted chair conformation. The dihedral angle between the mean planes of the fluoro-substituted benzene rings is 81.9 (1)° and these benzene rings form dihedral angles of 6.5 (1) and 87.8 (1)° with the phenyl ring. In the crystal, a single N—H...O hydrogen bond links the cation and the anion. In addition, weak C—H...O hydrogen bonds and π–π stacking interactions involving one of the fluoro-substituted benzene rings and the phenyl ring, with a centroid–centroid distance of 3.700 (7) Å, link molecules along [100].


2015 ◽  
Vol 71 (9) ◽  
pp. o674-o674
Author(s):  
Rodolfo Moreno-Fuquen ◽  
Alexis Azcárate ◽  
Alan R. Kennedy

In the title compound, C13H9ClN2O3, the mean plane of the central amide fragment (r.m.s. deviation = 0.016 Å) subtends dihedral angles of 15.2 (2) and 8.2 (2)° with the chloro- and nitro-substituted benzene rings, respectively. An intramolecular N—H...O hydrogen bond generates anS(6) ring. In the crystal, molecules are linked by weak C—H...O hydrogen bonds, formingC(7) chains which propagate along [010], but no Cl...Cl short contacts are observed.


Sign in / Sign up

Export Citation Format

Share Document