scholarly journals Low-temperature crystal structure of 4-chloro-1H-pyrazole

Author(s):  
Kelly Rue ◽  
Raphael G. Raptis

The structure of 4-chloro-1H-pyrazole, C3H3ClN2, at 170 K has orthorhombic (Pnma) symmetry and is isostructural to its bromo analogue. Data were collected at low temperature since 4-chloro-1H-pyrazole sublimes when subjected to the localized heat produced by X-rays. The structure displays intermolecular N—H...N hydrogen bonding and the packing features a trimeric molecular assembly bisected by a mirror plane (m normal to b) running through one chlorine atom, one carbon atom and one N—N bond. The asymmetric unit therefore consists of one and one-half 4-chloro-1H-pyrazole molecules. Thus, the N—H proton is crystallographically disordered over two positions of 50% occupancy each.

2006 ◽  
Vol 62 (5) ◽  
pp. o1770-o1771 ◽  
Author(s):  
Li Wu ◽  
Ai-Lin Liu ◽  
Yang Lu ◽  
Guan-Hua Du

In the crystal structure of the title compound, C17H14O3, the asymmetric unit comprises one half-molecule; a mirror plane passes through the pyran O atom and the para-carbon atom.


2006 ◽  
Vol 62 (7) ◽  
pp. o2765-o2767
Author(s):  
Hong-Li Wang ◽  
Bin Zhang ◽  
Yi Dai

The title compound, C10H9N3, is essently planar, except for the methyl H atoms. The asymmetric unit consists of two molecules. In the crystal structure, weak intramolecular C—H...N hydrogen-bonding interactions occur, linking the molecules into chains propagating along the a axis.


2006 ◽  
Vol 62 (4) ◽  
pp. o1319-o1320 ◽  
Author(s):  
Min-Hui Cao ◽  
Sheng-Zhen Xu ◽  
Yang-Gen Hu

The title compound, C15H16N2O2S, contains a five-membered thiophene ring fused to a benzene ring and a substituted pyrimidinone ring. All three rings in each of the independent molecules of the asymmetric unit lie in approximately the same plane. The crystal structure is stabilized by intermolecular C—H...O hydrogen bonding and π–π stacking interactions.


1996 ◽  
Vol 1 (3) ◽  
pp. 359-363 ◽  
Author(s):  
Glenn P. A. Yap ◽  
Mostafa M. Amini ◽  
Seik W. Ng ◽  
Anne E. Counterman ◽  
Arnold L. Rheingold

2015 ◽  
Vol 71 (10) ◽  
pp. o697-o698 ◽  
Author(s):  
Francesca A. Vaccaro ◽  
Lynn V. Koplitz ◽  
Joel T. Mague

The asymmetric unit of the title salt, C7H7N2+·BF4−, comprises two independent but nearly identical formula units. The solid-state structure comprises corrugated layers of cations and anions, formed by C—H...F hydrogen bonding, that are approximately parallel to (010). Further C—H...F hydrogen bonding consolidates the three-dimensional architecture. The sample was refined as a two-component non-merohedral twin.


Author(s):  
Alejandro Hernandez ◽  
Indranil Chakraborty ◽  
Gabriela Ortega ◽  
Christopher J. Dares

The title compound, [UO2(acac)2(H2O)] consists of a uranyl(VI) unit ([O=U=O]2+) coordinated to two monoanionic acetylacetonate (acac, C5H7O2) ligands and one water molecule. The asymmetric unit includes a one-half of a uranium atom, one oxido ion, one-half of a water molecule and one acac ligand. The coordination about the uranium atom is distorted pentagonal–bipyramidal. The acac ligands and Ow atom comprise the equatorial plane, while the uranyl O atoms occupy the axial positions. Intermolecular hydrogen bonding between complexes results in the formation of two-dimensional hexagonal void channels along the c-axis direction with a diameter of 6.7 Å. The monoclinic (P21/c space group) polymorph was reported by Alcock & Flanders [(1987). Acta Cryst. C43, 1480–1483].


2009 ◽  
Vol 65 (6) ◽  
pp. o1367-o1367
Author(s):  
B. Thimme Gowda ◽  
Sabine Foro ◽  
Hiromitsu Terao ◽  
Hartmut Fuess

The structure of the title compound, C8H6Cl3NO, contains two molecules in the asymmetric unit. In each independent molecule, the conformation of the N—H bond is almostsynto theortho-chloro substituent and the conformation of the C=O bond isantito the N—H bond. The molecules in the crystal structure are linked into supramolecular chains through N—H...O hydrogen bonding along theaaxis.


Author(s):  
Hansu Im ◽  
Jineun Kim ◽  
Changeun Sim ◽  
Tae Ho Kim

The title compound, (systematic name:N,N′-dibenzyl-3,3′-dimethoxy-1,1′-biphenyl-4,4′-diamine), C28H28N2O2, was synthesized by the reduction of a Schiff base preparedviaa condensation reaction betweeno-dianisidine and benzaldehyde under acidic conditions. The molecule lies on a crystallographic inversion centre so that the asymmetric unit contains one half-molecule. The biphenyl moiety compound is essentially planar. Two intramolecular N—H...O hydrogen bonds occur. The dihedral angle between the terminal phenyl and phenylene rings of a benzidine unit is 48.68 (6)°. The methylene C atom of the benzyl group is disordered over two sets of sites, with occupancy ratio 0.779 (18):0.221 (18). In the crystal, molecules are connected by hydrogen bonding betweeno-dianisidine O atoms and H atoms of the terminal benzyl groups, forming a one-dimensional ladder-like structure. In the data from DFT calculations, the central biphenyl showed a twisted conformation.


2014 ◽  
Vol 70 (11) ◽  
pp. 424-426 ◽  
Author(s):  
Hope T. Sartain ◽  
Richard J. Staples ◽  
Shannon M. Biros

We report here the crystal structure of a ten-coordinate lanthanum(III) metal coordinated by five bidentate ethylenediamine ligands, [La(C2H8N2)5]Cl3·C2H8N2·CH2Cl2. One free ethylenediamine molecule and three Cl−anions are also located in the asymmetric unit. The overall structure is held together by an extensive hydrogen-bonding network between the Cl−anions and the NH groups on the metal-bound ethylenediamine ligands. The free ethylenediamine molecule is held in an ordered position by additional hydrogen bonds involving both the chlorides and –NH groups on the metal-bound ligands. One highly disordered molecule of dichloromethane is located on an inversion center; however, all attempts to model this disorder were unsuccessful. The electron density in this space was removed using the BYPASS procedure [van der Sluis & Spek (1990).Acta Cryst.A46, 194–201].


Sign in / Sign up

Export Citation Format

Share Document