scholarly journals Crystal structure and Hirshfeld surface analysis of (E)-4-({2,2-dichloro-1-[4-(dimethylamino)phenyl]ethenyl}diazenyl)benzonitrile

Author(s):  
Namiq Q. Shikhaliyev ◽  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Gulnar T. Suleymanova ◽  
Gulnare V. Babayeva ◽  
...  

In the title compound, C17H14Cl2N4, the dihedral angle between the aromatic rings is 50.09 (9)°. The central –N=N– unit shows an E configuration. In the crystal, C—H...N interactions, C—Cl...π and π–π stacking interactions [centroid-to-centroid distance = 3.7719 (14) Å] link the molecules, forming molecular layers approximately parallel to the (002) plane. Additional weak van der Waals interactions between the layers consolidate the three-dimensional packing. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H...H (33.6%), N...H/ H...N (17.2%), Cl...H/H...Cl (14.1%) and C...H/H...C (14.1%) contacts.

Author(s):  
Kadriye Özkaraca ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Gulnar T. Suleymanova ◽  
...  

In the title compound, C16H14Cl2FN3, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short Cl...H contact, C—Cl...π and van der Waals interactions. The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H...H (33.3%), Cl...H/H...Cl (22.9%) and C...H/H...C (15.5%) interactions are the most important contributors towards the crystal packing.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Aytan A. Niyazova ◽  
...  

In the title compound, C16H12F5N3O, the dihedral angle between the aromatic rings is 31.84 (8)°. In the crystal, the molecules are linked into dimers possessing crystallographic twofold symmetry by pairwise N—H...O hydrogen bonds and weak C—H...O hydrogen bonds and aromatic π–π stacking interactions link the dimers into a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from F...H/H...F (41.1%), H...H (21.8%), C...H/H...C (9.7%) C...C (7.1%) and O...H/H...O (7.1%) contacts. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported molecular weight and density.


2017 ◽  
Vol 73 (8) ◽  
pp. 1197-1201
Author(s):  
Mónica Soto-Monsalve ◽  
Elkin L. Romero ◽  
Fabio Zuluaga ◽  
Manuel N. Chaur ◽  
Richard F. D'Vries

In the title compound, C18H20N2O7, the dihedral angle between the aromatic rings is 7.28 (7)° and the almost planar conformation of the molecule is supported by an intramolecular O—H...O hydrogen bond, which closes an S(6) ring. In the crystal, weak C—H...O hydrogen bonds and aromatic π–π stacking link the molecules into a three-dimensional network. A Hirshfeld surface analysis showed that the major contribution to the intermolecular interactions are van der Waals interactions (H...H contacts), accounting for 48.4% of the surface.


Author(s):  
Mohamed Samba ◽  
Mohamed Said Minnih ◽  
Tuncer Hökelek ◽  
Manpreet Kaur ◽  
Jerry P. Jasinski ◽  
...  

The title compound, C17H18N2O3, is constructed from a benzodiazepine ring system linked to a pendant dihydropyran ring, where the benzene and pendant dihydropyran rings are oriented at a dihedral angle of 15.14 (4)°. Intramolecular N—HDiazp...ODhydpand C—HDiazp...ODhydp(Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds link the seven-membered diazepine ring to the pendant dihydropyran ring, enclosingS(6) ring motifs. In the crystal, N—HDiazp...ODhydphydrogen bonds link the molecules into infinite chains along [10\overline{1}]. These chains are further linkedviaC—HBnz...ODhydp, C—HDhydp...ODhydpand C—HMth...ODhydp(Bnz = benzene and Mth = methyl) hydrogen bonds, forming a three-dimensional network. The observed weak C—HDiazp... π interaction may further stabilize the structure. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (51.1%), H...C/C...H (25.3%) and H...O/O...H (20.3%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing.


Author(s):  
Namiq Q. Shikhaliyev ◽  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Ayten M. Qacar ◽  
Rizvan K. Askerov ◽  
...  

The asymmetric unit of the title compound, C16H14Cl2N2O, comprises two similar molecules, A and B, in which the dihedral angles between the two aromatic rings are 70.1 (3) and 73.2 (2)°, respectively. The crystal structure features short C—H...Cl and C—H...O contacts and C—H...π and van der Waals interactions. The title compound was refined as a two-component non-merohedral twin, BASF 0.1076 (5). The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H...H (38.2% for molecule A; 36.0% for molecule B), Cl...H/H...Cl (24.6% for molecule A; 26.7% for molecule B) and C...H/H...C (20.0% for molecule A; 20.2% for molecule B) interactions are the most important contributors to the crystal packing.


Author(s):  
Ballo Daouda ◽  
Nanou Tiéba Tuo ◽  
Tuncer Hökelek ◽  
Kangah Niameke Jean-Baptiste ◽  
Kodjo Charles Guillaume ◽  
...  

The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl...NPrmdn and N—HPrmdn...OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H...π interactions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (49.0%), H...C/C...H (35.8%) and H...O/O...H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl...NPrmdn and N—HPrmdn...OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


2018 ◽  
Vol 74 (12) ◽  
pp. 1887-1890 ◽  
Author(s):  
Sevgi Kansiz ◽  
Mustafa Macit ◽  
Necmi Dege ◽  
Vadim A. Pavlenko

The title Schiff base compound, C22H28ClNO, shows mirror symmetry with all its non-H atoms, except thetert-butyl groups, located on the mirror plane. There is an intramolecular O—H...N hydrogen bond present forming anS(6) ring motif. In the crystal, the molecules are connected by C—H...π interactions, generating a three-dimensional supramolecular structure. Hirshfeld surface analysis and two dimensional fingerprint plots were used to analyse the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H...H (68.9%) and C...H/H...C (11.7%) interactions.


Author(s):  
Farid N. Naghiyev ◽  
Maria M. Grishina ◽  
Victor N. Khrustalev ◽  
Ali N. Khalilov ◽  
Mehmet Akkurt ◽  
...  

In the title compound, C28H21N3O, the 1,2-dihydropyridine ring of the 1,2,7,8-tetrahydroisoquinoline ring system is planar as expected, while the cyclohexa-1,3-diene ring has a twist-boat conformation, with Cremer–Pople parameters Q T = 0.367 (2) A, θ = 117.3 (3)° and φ = 327.3 (4)°. The dihedral angles between the best planes through the isoquinoline ring system and the three phenyl rings are 81.69 (12), 82.45 (11) and 47.36 (10)°. In the crystal, molecules are linked via N—H...O and C—H...N hydrogen bonds, forming a three-dimensional network. Furthermore, the crystal packing is dominated by C—H...π bonds with a strong interaction involving the phenyl H atoms. The role of the intermolecular interactions in the crystal packing was clarified using Hirshfeld surface analysis, and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (46.0%), C...H/H...C (35.1%) and N...H/H...N (10.5%) contacts.


Author(s):  
Yassine El Ghallab ◽  
Sanae Derfoufi ◽  
El Mostafa Ketatni ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

The asymmetric unit of the title compound, C10H11NO4, which was synthesized via nitration reaction of eugenol (4-allyl-2-methoxyphenol) with a mixture of nitric acid and sulfuric acid, consists of three independent molecules of similar geometry. Each molecule displays an intramolecular hydrogen bond involving the hydroxide and the nitro group forming an S(6) motif. The crystal cohesion is ensured by intermolecular C—H...O hydrogen bonds in addition to π–π stacking interactions between the aromatic rings [centroid–centroid distances = 3.6583 (17)–4.0624 (16) Å]. The Hirshfeld surface analysis and the two-dimensional fingerprint plots show that H...H (39.6%), O...H/H...O (37.7%), C...H/H...C (12.5%) and C...C (4%) are the most important contributors towards the crystal packing.


2018 ◽  
Vol 74 (8) ◽  
pp. 1063-1066 ◽  
Author(s):  
S. N. Sheshadri ◽  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
M. K. Veeraiah ◽  
Ching Kheng Quah ◽  
...  

In the molecule of the title compound, C17H14BrFO3, the aromatic rings are tilted with respect to the enone bridge by 13.63 (14) and 4.27 (15)°, and form a dihedral angle 17.91 (17)°. In the crystal, centrosymmetrically related molecules are linked by pairs of C—H...O hydrogen bonds into dimeric units, forming rings of R 2 2(14) graph-set motif. The dimers are further connected by weak C—H...O hydrogen interactions, forming layers parallel to (10\overline{1}). Hirshfeld surface analysis shows that van der Waals interactions constitute the major contribution to the intermolecular interactions, with H...H contacts accounting for 29.7% of the surface.


Sign in / Sign up

Export Citation Format

Share Document