scholarly journals Polymeric coordination complex of lithium(I) with aqua and cyanurate ligands

Author(s):  
Anjapuli Ponnuvel ◽  
Arumugam Pillai Kala ◽  
Karachalacherevu Seetharamiah Nagaraja ◽  
Chandran Karnan

The polymeric title complex, poly[hexa-μ-aqua-diaquatetra-μ-cyanurato-tetralithium] [Li4(C3H2N3O3)4(H2O)7] n , synthesized at room temperature from an aqueous solution of lithium hydroxide and cyanuric chloride, crystallizes in the triclinic space group P\overline{1}. There are two distinct Li+ cations in the asymmetric unit, one of which, Li1, has distorted trigonal–bipyramidal geometry and is coordinated via oxygen to two cyanurate anions occupying equatorial positions, and three water molecules, two in the axial positions and the third in an equatorial position. One of the axial water ligands and the equatorial water ligand are involved in bridging to a crystallographically equivalent Li1 cation. A centre of inversion lies between the two Li1 cations and the Li1...Li1 distance is 3.037 (5) Å. The remaining axial water ligand bridges to the second Li cation, Li2, which is disordered over two crystallographic sites with approximately equal occupancy, and has an Li1...Li2 distance of 3.438 (7) Å. The terminal Li2 cation is coordinated to three water molecules and an oxygen atom from a cyanuric anion and has a distorted tetrahedral geometry. A three-dimensional network of intermolecular hydrogen bonds involving N—H...O, O—H...O and O—H...N interactions serves to hold the structure together, as confirmed by a Hirshfeld surface analysis. The title compound was further characterized using IR and UV–vis spectroscopy and TG–DTA analysis.

Author(s):  
Stefan Suckert ◽  
Mario Wriedt ◽  
Inke Jess ◽  
Christian Näther

In the crystal structure of the title compound, [Ni(NCS)2(H2O)4]·4C6H8N2, the NiIIcations are coordinated by four water ligands and twotrans-coordinated terminallyN-bonded thiocyanate anions in a slightly distorted octahedral geometry. The asymmetric unit consists of a Ni2+cation located on a centre of inversion, two water molecules and one thiocyanate ligand, as well as two uncoordinated 2,5-dimethylpyrazine ligands in general positions. In the crystal, discrete complex molecules are linked into a three-dimensional network by O—H...N hydrogen bonding between the water H atoms and the 2,5-dimethylpyrazine N atoms.


Author(s):  
Patrycja Paciorek ◽  
Janusz Szklarzewicz ◽  
Wojciech Nitek

In the title complex salt, (C6H6N5)2[ZnCl4], the ZnIIcation is coordinated by four chloride ligands in a distorted tetrahedral geometry. The organic cations and complex anions are connected by N—H...Cl hydrogen bonds, leading to the formation of a three-dimensional network. The title complex salt was synthesized by the reaction of sodium azide, pyridine-2-carbonitrile and ZnCl2in aqueous solution. The salt was characterized by elemental analysis and IR and UV–Vis spectroscopy.


2014 ◽  
Vol 70 (11) ◽  
pp. 290-293 ◽  
Author(s):  
Dohyun Moon ◽  
Jong-Ha Choi

In the asymmetric unit of the title compound, [CrF2(C5H5N)4][ZnCl3(C5H5N)]·H2O, there are two independent complex cations, one trichlorido(pyridine-κN)zincate anion and one solvent water molecule. The cations lie on inversion centers. The CrIIIions are coordinated by four pyridine (py) N atoms in the equatorial plane and two F atoms in atransaxial arrangement, displaying a slightly distorted octahedral geometry. The Cr—N(py) bond lengths are in the range 2.0873 (14) to 2.0926 (17) Å while the Cr—F bond lengths are 1.8609 (10) and 1.8645 (10) Å. The [ZnCl3(C5H5N)]−anion has a distorted tetrahedral geometry. The Cl atoms of the anion were refined as disordered over two sets of sites in a 0.631 (9):0.369 (9) ratio. In the crystal, two anions and two water molecules are linkedviaO—H...Cl hydrogen bonds, forming centrosymmetric aggregates. In addition, weak C—H...Cl, C—H...π and π–π stacking interactions [centroid–centroid distances = 3.712 (2) and 3.780 (2)Å] link the components of the structure into a three-dimensional network.


2012 ◽  
Vol 68 (8) ◽  
pp. m1042-m1043
Author(s):  
Zhan-Wang Shi ◽  
Yan Qin ◽  
Yan-Xia Lin ◽  
Wei Wu ◽  
Peng Liang

In the title compound, [CoCl(C10H7N3S)2]Cl·2H2O, the CoIIatom is five-coordinated by four N atoms from two chelating 2-(1,3-thiazol-4-yl)-1H-benzimidazole ligands and one Cl atom in a distorted trigonal–bipyramidal geometry. In the crystal, N—H...O and O—H...Cl hydrogen bonds and π–π interactions between the thiazole, imidazole and benzene rings [centroid-to-centroid distances 3.546 (2), 3.683 (2) and 3.714 (2) Å] link the complex cations, chloride anions and uncoordinating water molecules into a three-dimensional network.


2014 ◽  
Vol 70 (6) ◽  
pp. m202-m203 ◽  
Author(s):  
Manel Essid ◽  
Thierry Roisnel ◽  
Houda Marouani

In the title hydrated salt, (C5H14N2)2[Bi2Br10]·2H2O, the complete [Bi2Br10]4−bioctahedron is generated by crystallographic inversion symmetry. The diprotonated piperazine ring adopts a chair conformation, with the methyl group occupying an equatorial position. In the crystal, the tetraanions and water molecules are linked by O—H...Br and O—H...(Br,Br) hydrogen bonds to generate [100] chains. The chains are crosslinked by N—H...Br, N—H...O and C—H...Br hydrogen bonds originating from the piperazinediium dications, thereby forming a three-dimensional network.


2012 ◽  
Vol 68 (4) ◽  
pp. m464-m465 ◽  
Author(s):  
Teik Beng Goh ◽  
Mohd Nizam Mordi ◽  
Sharif Mahsufi Mansor ◽  
Mohd Mustaqim Rosli ◽  
Hoong-Kun Fun

The asymmetric unit of the title compound, (C13H17N2O)2[ZnCl4]·2H2O, contains two tetrahydroharmine cations, one tetrachlorozincate(II) anion and two water molecules. In the cations, the two 1H-indole ring systems are essentially planar, with maximum deviations of 0.016 (2) and 0.018 (2) Å, and both tetrahydropyridinium rings show a half-chair conformation. The ZnIIcomplex anion has a distorted tetrahedral geometry. In the crystal, intermolecular N—H...O, N—H...Cl, O—H...O, O—H...Cl and C—H...O hydrogen bonds link the components into a three-dimensional network. A π–π interaction with a centroid–centroid distance of 3.542 (14) Å is also observed.


2007 ◽  
Vol 63 (3) ◽  
pp. m826-m828 ◽  
Author(s):  
H. Zhong ◽  
X.-R. Zeng ◽  
X.-M. Yang ◽  
Q.-Y. Luo ◽  
S.-Z. Xiao

The CuI atom in the title complex, [CuCl(C12H8N2)2]·6H2O, exists in a distorted trigonal-bipyramidal coordination geometry defined by one Cl atom and four N atoms of two 1,10-phenanthroline ligands. In the crystal structure, molecules are linked into a three-dimensional framework by O—H...O hydrogen bonds and π–π stacking interactions. Four water molecules lie on crystallographic twofold rotation axes.


2018 ◽  
Vol 33 (2) ◽  
pp. 98-107 ◽  
Author(s):  
James A. Kaduk

The crystal structures of calcium citrate hexahydrate, calcium citrate tetrahydrate, and anhydrous calcium citrate have been solved using laboratory and synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Both the hexahydrate and tetrahydrate structures are characterized by layers of edge-sharing Ca coordination polyhedra, including triply chelated Ca. An additional isolated Ca is coordinated by water molecules, and two uncoordinated water molecules occur in the hexahydrate structure. The previously reported polymorph of the tetrahydrate contains the same layers, but only two H2O coordinated to the isolated Ca and two uncoordinated water molecules. Anhydrous calcium citrate has a three-dimensional network structure of Ca coordination polyhedra. The new polymorph of calcium citrate tetrahydrate is the major crystalline phase in several commercial calcium supplements.


2014 ◽  
Vol 70 (2) ◽  
pp. m75-m75 ◽  
Author(s):  
Marwa Mghandef ◽  
Habib Boughzala

The asymmetric unit of the title inorganic–organic hybrid compound, (C10H16N2O)[CoCl4]·H2O, consists of a tetrahedral [CoCl4]2−anion, together with a [C10H18N2O]2+cation and a water molecule. Crystal cohesion is achieved through N—H...Cl, O—H...Cl and N—H...O hydrogen bonds between organic cations, inorganic anions and the water molecules, building up a three-dimensional network.


Author(s):  
Gülçin Şefiye Aşkın ◽  
Fatih Çelik ◽  
Nefise Dilek ◽  
Hacali Necefoğlu ◽  
Tuncer Hökelek

In the title polymeric compound, [Co(C8H5O3)2(C4H4N2)(H2O)2]n, the CoIIatom is located on a twofold rotation axis and has a slightly distorted octahedral coordination sphere. In the equatorial plane, it is coordinated by two carboxylate O atoms of two symmetry-related monodentate formylbenzoate anions and by two N atoms of two bridging pyrazine ligands. The latter are bisected by the twofold rotation axis. The axial positions are occupied by two O atoms of the coordinating water molecules. In the formylbenzoate anion, the carboxylate group is twisted away from the attached benzene ring by 7.50 (8)°, while the benzene and pyrazine rings are oriented at a dihedral angle of 64.90 (4)°. The pyrazine ligands bridge the CoIIcations, forming linear chains running along theb-axis direction. Strong intramolecular O—H...O hydrogen bonds link the water molecules to the carboxylate O atoms. In the crystal, weak O—Hwater...Owaterhydrogen bonds link adjacent chains into layers parallel to thebcplane. The layers are linkedviaC—Hpyrazine...Oformylhydrogen bonds, forming a three-dimensional network. There are also weak C—H...π interactions present.


Sign in / Sign up

Export Citation Format

Share Document