water ligands
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 2)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 532
Author(s):  
Todor Dudev ◽  
Diana Cheshmedzhieva ◽  
Peter Dorkov ◽  
Ivayla Pantcheva

The affinity of the polyether ionophore salinomycin to bind IA/IB metal ions was accessed using the Gibbs free energy of the competition reaction between SalNa (taken as a reference) and its rival ions: [M+-solution] + [SalNa] → [SalM] + [Na+-solution] (M = Li, K, Rb, Cs, Cu, Ag, Au). The DFT/PCM computations revealed that the ionic radius, charge density and accepting ability of the competing metal cations, as well as the dielectric properties of the solvent, have an influence upon the selectivity of salinomycin. The optimized structures of the monovalent metal complexes demonstrate the flexibility of the ionophore, allowing the coordination of one or two water ligands in SalM-W1 and SalM-W2, respectively. The metal cations are responsible for the inner coordination sphere geometry, with coordination numbers spread between 2 (Au+), 4 (Li+ and Cu+), 5/6 (Na+, K+, Ag+), 6/7 (Rb+) and 7/8 (Cs+). The metals’ affinity to salinomycin in low-polarity media follows the order of Li+ > Cu+ > Na+ > K+ > Au+ > Ag+ > Rb+ > Cs+, whereas some derangement takes place in high-dielectric environment: Li+ ≥ Na+ > K+ > Cu+ > Au+ > Ag+ > Rb+ > Cs+.


Author(s):  
Anjapuli Ponnuvel ◽  
Arumugam Pillai Kala ◽  
Karachalacherevu Seetharamiah Nagaraja ◽  
Chandran Karnan

The polymeric title complex, poly[hexa-μ-aqua-diaquatetra-μ-cyanurato-tetralithium] [Li4(C3H2N3O3)4(H2O)7] n , synthesized at room temperature from an aqueous solution of lithium hydroxide and cyanuric chloride, crystallizes in the triclinic space group P\overline{1}. There are two distinct Li+ cations in the asymmetric unit, one of which, Li1, has distorted trigonal–bipyramidal geometry and is coordinated via oxygen to two cyanurate anions occupying equatorial positions, and three water molecules, two in the axial positions and the third in an equatorial position. One of the axial water ligands and the equatorial water ligand are involved in bridging to a crystallographically equivalent Li1 cation. A centre of inversion lies between the two Li1 cations and the Li1...Li1 distance is 3.037 (5) Å. The remaining axial water ligand bridges to the second Li cation, Li2, which is disordered over two crystallographic sites with approximately equal occupancy, and has an Li1...Li2 distance of 3.438 (7) Å. The terminal Li2 cation is coordinated to three water molecules and an oxygen atom from a cyanuric anion and has a distorted tetrahedral geometry. A three-dimensional network of intermolecular hydrogen bonds involving N—H...O, O—H...O and O—H...N interactions serves to hold the structure together, as confirmed by a Hirshfeld surface analysis. The title compound was further characterized using IR and UV–vis spectroscopy and TG–DTA analysis.


Author(s):  
Jie Ma ◽  
Wen-Zhi Zhang ◽  
Jie Xiong ◽  
Chun-Yan Yan

The title coordination polymer, {[Co2(C12H7NO8)(H2O)6]·5H2O} n , was crystallized at room temperature from an aqueous solution of 2-aminodiacetic terephthalic acid (H4adtp) and cobalt(II) nitrate. The asymmetric unit consists of one adtp4− ligand, one and two half CoII ions, six water ligands coordinated to CoII ions and five uncoordinated water molecules. Two of the cobalt cations lie on centres of inversion and are coordinated in octahedral O2(OH2)4 environments, whereas the other adopts a slightly distorted octahedral NO3(OH2)2 environment. The crystal structure contains parallel stacked, one-dimensional zigzag chains, {[Co2(C12H7NO8)(H2O)6]} n , which assemble into a three-dimensional supramolecular architecture via networks of hydrogen bonds involving the coordinated and free water molecules. One-dimensional `water tapes' are formed, containing alternating six-membered and twelve-membered rings of water molecules, together with water pentamers, in which a central uncoordinated water molecule is hydrogen bonded to two coordinated and two free water molecules in a tetrahedral arrangement.


2021 ◽  
Vol 22 (14) ◽  
pp. 7288
Author(s):  
Francisco Andrés Peralta ◽  
J. Pablo Huidobro-Toro ◽  
Raúl Mera-Adasme

To ascertain the role of Zn(II) as an allosteric modulator on P2X4R, QM/MM molecular dynamic simulations were performed on the WT and two P2X4R mutants suggested by previous electrophysiological data to affect Zn(II) binding. The Gibbs free energy for the reduction of the putative P2X4R Zn(II) binding site by glutathione was estimated at −22 kcal/mol. Simulations of the WT P2X4R head domain revealed a flexible coordination sphere dominated by an octahedral geometry encompassing C126, N127, C132, C149, C159 and a water molecule. The C132A mutation disrupted the metal binding site, leading to a coordination sphere with a majority of water ligands, and a displacement of the metal ion towards the solvent. The C132A/C159A mutant exhibited a tendency towards WT-like stability by incorporating the R148 backbone to the coordination sphere. Thus, the computational findings agree with previous experimental data showing Zn(II) modulation for the WT and C132A/C159A variants, but not for the C132A mutant. The results provide molecular insights into the nature of the Zn(II) modulation in P2X4R, and the effect of the C132A and C132A/C159A mutations, accounting for an elusive modulation mechanism possibly occurring in other extracellular or membrane protein.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sheng-Qun Su ◽  
Shu-Qi Wu ◽  
Masato Hagihala ◽  
Ping Miao ◽  
Zhijian Tan ◽  
...  

AbstractWater reorientation is essential in a wide range of chemical and biological processes. However, the effects of such reorientation through rotation around the metal–oxygen bond on the chemical and physical properties of the resulting complex are usually ignored. Most studies focus on the donor property of water as a recognized σ donor-type ligand rather than a participant in the π interaction. Although a theoretical approach to study water-rotation effects on the functionality of a complex has recently been conducted, it has not been experimentally demonstrated. In this study, we determine that the magnetic anisotropy of a Co(II) complex can be effectively controlled by the slight rotation of coordinating water ligands, which is achieved by a two-step structural phase transition. When the water molecule is rotated by 21.2 ± 0.2° around the Co–O bond, the directional magnetic susceptibility of the single crystal changes by approximately 30% along the a-axis due to the rotation of the magnetic anisotropy axis through the modification of the π interaction between cobalt(II) and the water ligand. The theoretical calculations further support the hypothesis that the reorientation of water molecules is a key factor contributing to the magnetic anisotropy transition of this complex.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idelle Nono Kamga ◽  
Augustin Nkwento Nana ◽  
Bridget Ndoye Ndosiri ◽  
Frédéric Capet ◽  
Michel Foulon ◽  
...  

Abstract A new salt (CH6N3)[t-Cr(C2O4)2(H2O)2]·2H2O (1) (CH6N3 + = guanidinium cation) has been synthesized and characterized by single-crystal X-ray diffraction, FT-IR and UV–Vis spectroscopies, elemental and thermogravimetric analyses. In the crystal structure of 1, the chromate(III) ion lies on an inversion center in the form of an elongated octahedron. The coordination sphere consists of four oxygen atoms of two chelating oxalato ligands in the equatorial plane and two axial oxygen atoms of water ligands. The structural feature of focal interest in the structure of 1 is the formation of pillars of [Cr(C2O4)2(H2O)2]− complex anions and CH6N3 + guanidinium cations, with the next-neighbor cations rotated by an angle of 60° relative to each other. O–H···O and N–H···O hydrogen bonds play an important role in the construction of the three-dimensional network. The electron paramagnetic resonance (EPR) and magnetic properties of 1 have also been investigated.


2021 ◽  
Vol 12 (15) ◽  
pp. 5638-5654
Author(s):  
Zachary R. Jones ◽  
Maksim Y. Livshits ◽  
Frankie D. White ◽  
Elodie Dalodière ◽  
Maryline G. Ferrier ◽  
...  

Actinide complexation from aqueous acetic acid/acetate buffered solutions is described. The number of water ligands was directly correlated with the acetate concentration and characterized by X-ray absorption and optical spectroscopy.


Author(s):  
Peng Zhang ◽  
Nan Song ◽  
Songbin Liu ◽  
Qiqing Li ◽  
Yu Wang ◽  
...  

A new type of ligand-induced lanthanide metal–organic framework nanosphere is reported, which yields tunable emission colors by adding or removing water ligands, showing great promise in MOF sensors and anti-counterfeiting.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 249-262
Author(s):  
Baoshan Xie ◽  
Yi Hou ◽  
Youming Li

Heavy metal ions in wastewater have negative effects on humans and the environment. In this paper, the adsorption of lead and copper ions by modified eucalyptus lignin nanosphere (ECLNPs) was studied. The spherical alkali-lignin particles had a diameter of 50 nm, abundant carboxyl groups of 0.66 mmol/g, and relatively high adsorption performance. The equilibrium adsorption capacities of Pb(II) and Cu(II) by ECLNPs were 126.0 mg/g and 54.4 mg/g, respectively. Both Pb(II) and Cu(II) adsorptive processes fitted a pseudo-second-order kinetics model. In the simultaneous adsorption process of Pb(II) and Cu(II), ECLNPs had higher adsorptive selectivity for Pb(II) than Cu(II), and there was a competitive adsorption process between Pb(II) and Cu(II). This resulted from the lower hydration heat of Pb(II) in water, which leads to easier separation from water ligands. ECLNPs also showed good recyclability, with 16.6% and 21.1% loss in Pb(II) and Cu(II) adsorption capacity, respectively, after three consecutive adsorption-desorption cycles, which provides a feasible technical direction for the utilization of biomass resources and the treatment of water contamination.


2020 ◽  
Vol 76 (10) ◽  
pp. 972-981
Author(s):  
Heather C. Gardner ◽  
Alan R. Kennedy ◽  
Karen M. McCarney ◽  
Edward Staunton ◽  
Heather Stewart ◽  
...  

The structures of five s-block metal salt forms of three disulfonated monoazo dyes are presented. These are poly[di-μ-aqua-diaqua[μ4-3,3′-(diazane-1,2-diyl)bis(benzenesulfonato)]disodium(I)], [Na2(C12H8N2O6S2)(H2O)4] n , (I), catena-poly[[tetraaquacalcium(II)]-μ-3,3′-(diazane-1,2-diyl)bis(benzenesulfonato)], [Ca(C12H8N2O6S2)(H2O)4] n , (II), catena-poly[[[diaquacalcium(II)]-μ-2-(4-amino-3-sulfonatophenyl)-1-(4-sulfonatophenyl)diazenium] dihydrate], {[Na(C12H10N3O6S2)(H2O)2]·2H2O} n , (III), hexaaquamagnesium bis[2-(4-amino-3-sulfonatophenyl)-1-(4-sulfonatophenyl)diazenium] octahydrate, [Mg(H2O)6](C12H10N3O6S2)2·8H2O, (IV), and poly[[{μ2-4-[2-(4-amino-2-methyl-5-methoxyphenyl)diazen-1-yl]benzene-1,3-disulfonato}di-μ-aqua-diaquabarium(II)] dihydrate], {[Ba(C14H13N3O7S2)(H2O)4]·2H2O} n , (V). Compound (III) is that obtained on crystallizing the commercial dyestuff Acid Yellow 9 [74543-21-8]. The Mg species is a solvent-separated ion-pair structure and the others are all coordination polymers with bonds from the metal atoms to sulfonate groups. Compound (I) is a three-dimensional coordination polymer, (V) is a two-dimensional coordination polymer and both (II) and (III) are one-dimensional coordination polymers. The coordination behaviour of the azo ligands and the water ligands, the dimensionality of the coordination polymers and the overall packing motifs of these five structures are contrasted to those of monosulfonate monoazo congers. It is found that (I) and (II) adopt similar structural types to those of monosulfonate species but that the other three structures do not.


Sign in / Sign up

Export Citation Format

Share Document