scholarly journals A monoclinic modification of (4Z)-1-benzyl-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one

IUCrData ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Mohamed Samba ◽  
Mohamed Said Minnih ◽  
Youness El Bakri ◽  
El Mokhtar Essassi ◽  
Joel T. Mague

In the title molecule, C19H18N2O2, the orientation of the oxopropylidene substituent is largely determined by an intramolecular N—H...O hydrogen bond. In the crystal, C—H...O hydrogen bonds form zigzag chains, which are elaborated into sheets lying parallel to (101) by complementary C—H...π interactions. Comparisons to the structure of the triclinic modification are made.

2012 ◽  
Vol 68 (8) ◽  
pp. o2492-o2492
Author(s):  
Hayette Alliouche ◽  
Sofiane Bouacida ◽  
Thierry Roisnel ◽  
Ali Belfaitah

In the title molecule, C18H15N3O2, the dihedral angle between the quinoline and benzimidazole ring systems is 23.57 (5)°. The C atoms of the methoxy groups are both close to being coplanar with their attached ring systems [deviations = 0.193 (2) and −0.020 (2) Å]. An intramolecular N—H...O hydrogen bond closes anS(6) ring. In the crystal, N—H...N hydrogen bonds link the molecules intoC(4) chains propagating in [010]. Weak C—H...π interactions also occur.


2015 ◽  
Vol 71 (4) ◽  
pp. o235-o235 ◽  
Author(s):  
Sharanbasappa Khanapure ◽  
Gajanan Rashinkar ◽  
Tarulata Chhowala ◽  
Sumati Anthal ◽  
Rajni Kant

In the title molecule, C20H19NO2, the naphthalene ring system subtends a dihedral angle of 82.50 (7)° with the benzene ring and an intramolecular N—H...O hydrogen bond closes anS(6) ring. In the crystal, molecules are linked by O—H...O hydrogen bonds, which generateC(8) chains propagating in the [010] direction. The crystal structure also features weak π–π interactions [centroid–centroid separation = 3.7246 (10) Å].


2015 ◽  
Vol 71 (9) ◽  
pp. o636-o636
Author(s):  
Nadiah Ameram ◽  
Farook Adam

In the title compound, C16H17N3OS, a benzoyl thiourea derivative, the planes of the pyridine and benzene rings are inclined to one another by 66.54 (9)°. There is an intramolecular N—H...O hydrogen bond present forming anS(6) ring motif. In the crystal, molecules are linkedviapairs of N—H...N hydrogen bonds, forming inversion dimers, which are reinforced by pairs of C—H...S hydrogen bonds. The dimers are linkedviaC—H...π interactions, forming ribbons along [010].


Author(s):  
Ying Liang ◽  
Li-Qiao Shi ◽  
Zi-Wen Yang

In the title compound, C19H13ClF2N2O2, the conformation of the N—H bond in the amide segment isantito the C=O bond. The molecule is not planar, with dihedral angles between the central benzene ring and the outer benzene and pyridyl rings of 73.35 (7) and 81.26 (6)°, respectively. A weak intramolecular C—H...O hydrogen bond occurs. In the crystal, N—H...N, C—H...O and C—H...F hydrogen bonds lead to the formation of dimers. The N—H...N inversion dimers are linked by π–π contacts between adjacent pyridine rings [centroid–centroid = 3.8541 (12) Å] and C—H...π interactions. These contacts combine to stack the molecules along theaaxis.


Author(s):  
Qi-Di Zhong ◽  
Sheng-Quan Hu ◽  
Hong Yan

In the title compound, C13H12N2O2(I), the mean planes of the pyrrole and benzyl rings are approximately perpendicular, forming a dihedral angle of 87.07 (4) °. There is an intramolecular N—H...O hydrogen bond forming an S(7) ring motif. In the crystal, molecules are linkedviaa pair of N—H...O hydrogen bonds forming inversion dimers. C—H...O hydrogen bonds link the dimers into chains along direction [10-1]. The chains are further linked by weak C—H...π interactions forming layers parallel to theacplane.


2015 ◽  
Vol 71 (4) ◽  
pp. o227-o228 ◽  
Author(s):  
M. S. Krishnamurthy ◽  
Noor Shahina Begum ◽  
D. Shamala ◽  
K. Shivashankar

In the title molecule, C13H13N3O2, the benzopyran ring system is essentially planar, with a maximum deviation of 0.017 (1) Å. In the crystal, weak C—H...O hydrogen bonds link molecules into ladders along [010]. In addition, π–π interactions between inversion-related molecules, with centroid–centroid distances in the range 3.679 (2)–3.876 (2) Å, complete a two-dimensional network parallel to (001).


2016 ◽  
Vol 72 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Lina M. Acosta Quintero ◽  
Isidro Burgos ◽  
Alirio Palma ◽  
Justo Cobo ◽  
Christopher Glidewell

A simple and effective two-step approach to tricyclic pyrimidine-fused benzazepines has been adapted to give the tetracyclic analogues. In (RS)-8-chloro-6-methyl-1,2,6,7-tetrahydropyrimido[5′,4′:6,7]azepino[3,2,1-hi]indole, C15H14ClN3, (I), the five-membered ring adopts an envelope conformation, as does the reduced pyridine ring in (RS)-9-chloro-7-methyl-2,3,7,8-tetrahydro-1H-pyrimido[5′,4′:6,7]azepino[3,2,1-ij]quinoline, C16H16ClN3, (II). However, the seven-membered rings in (I) and (II) adopt very different conformations, with the result that the methyl substituent occupies a quasi-axial site in (I) but a quasi-equatorial site in (II). The molecules of (I) are linked by C—H...N hydrogen bonds to formC(5) chains and inversion-related pairs of chains are linked by a π–π stacking interaction. A combination of a C—H...π hydrogen bond and two C—Cl...π interactions links the molecules of (II) into complex sheets. Comparisons are made with some similar fused heterocyclic compounds.


Author(s):  
Mamadou Ndiaye ◽  
Abdoulaye Samb ◽  
Libasse Diop ◽  
Thierry Maris

The crystal structure of the title salt, [Fe(C5H5)(C8H13N)](HC2O4), consists of discrete (ferrocenylmethyl)dimethylammonium cations and hydrogen oxalate anions. The anions are connected through a strong O—H...O hydrogen bond, forming linear chains running parallel to [100]. The cations are linked to the anions through bifurcated N—H...(O,O′) hydrogen bonds. Weak C—H...π interactions between neighbouring ferrocenyl moieties are also observed.


2015 ◽  
Vol 71 (12) ◽  
pp. 1545-1547
Author(s):  
Koji Kubono ◽  
Kimiko Kado ◽  
Yukiyasu Kashiwagi ◽  
Keita Tani ◽  
Kunihiko Yokoi

In the title compound, C22H19ClN4O, the quinolinol moiety is almost planar [r.m.s. deviation = 0.012 Å]. There is an intramolecular O—H...N hydrogen bond involving the hydroxy group and a pyridine N atom forming anS(9) ring motif. The dihedral angles between the planes of the quinolinol moiety and the pyridine rings are 44.15 (9) and 36.85 (9)°. In the crystal, molecules are linkedviaC—H...O hydrogen bonds forming inversion dimers with anR44(10) ring motif. The dimers are linked by C—H...N hydrogen bonds, forming ribbons along [01-1]. The ribbons are linked by C—H...π and π–π interactions [inter-centroid distance = 3.7109 (11) Å], forming layers parallel to (01-1).


2014 ◽  
Vol 70 (2) ◽  
pp. o195-o196 ◽  
Author(s):  
Hasna Hayour ◽  
Abdelmalek Bouraiou ◽  
Sofiane Bouacida ◽  
Saida Benzerka ◽  
Ali Belfaitah

In the title molecule, C17H13NO2, the phenyl ring is inclined to the quinoline ring system by 43.53 (4)°. In the crystal, molecules are linkedviaC—H...O hydrogen bonds, forming double-stranded chains propagating along [011]. These chains are linkedviaπ–π interactions involving inversion-related quinoline rings; the shortest centroid–centroid distance is 3.6596 (17) Å.


Sign in / Sign up

Export Citation Format

Share Document