A hybrid ant colony–particle swarm optimization method (ACOPSO) for aerospace propulsion systems

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Altug Piskin ◽  
Tolga Baklacioglu ◽  
Onder Turan

Purpose The purpose of this paper is to introduce a hybrid, metaheuristic, multimodal and multi-objective optimization tool that is needed for aerospace propulsion engineering problems. Design/methodology/approach Multi-objective hybrid optimization code is integrated with various benchmark and test functions that are selected suitable to the difficulty level of the aero propulsion performance problems. Findings Ant colony and particle swarm optimization (ACOPSO) has performed satisfactorily with benchmark problems. Research limitations/implications ACOPSO is able to solve multi-objective and multimodal problems. Because every optimization problem has specific features, it is necessary to search their general behavior using other algorithms. Practical implications In addition to the optimization solving, ACOPSO enables an alternative methodology for turbine engine performance calculations by using generic components maps. The user is flexible for searching various effects of component designs along with the compressor and turbine maps. Originality/value A hybrid optimization code that has not been used before is introduced. It is targeted use is propulsion systems optimization and design such as Turboshaft or turbofan by preparing the necessary engine functions. A number of input parameters and objective functions can be modified accordingly.

Author(s):  
Priyadarshi Biplab Kumar ◽  
Dayal R. Parhi ◽  
Chinmaya Sahu

PurposeWith enhanced use of humanoids in demanding sectors of industrial automation and smart manufacturing, navigation and path planning of humanoid forms have become the centre of attraction for robotics practitioners. This paper aims to focus on the development and implementation of a hybrid intelligent methodology to generate an optimal path for humanoid robots using regression analysis, adaptive particle swarm optimization and adaptive ant colony optimization techniques.Design/methodology/approachSensory information regarding obstacle distances are fed to the regression controller, and an interim turning angle is obtained as the initial output. Adaptive particle swarm optimization technique is used to tune the governing parameter of adaptive ant colony optimization technique. The final output is generated by using the initial output of regression controller and tuned parameter from adaptive particle swarm optimization as inputs to the adaptive ant colony optimization technique along with other regular inputs. The final turning angle calculated from the hybrid controller is subsequently used by the humanoids to negotiate with obstacles present in the environment.FindingsAs the current investigation deals with the navigational analysis of single as well as multiple humanoids, a Petri-Net model has been combined with the proposed hybrid controller to avoid inter-collision that may happen in navigation of multiple humanoids. The hybridized controller is tested in simulation and experimental platforms with comparison of navigational parameters. The results obtained from both the platforms are found to be in coherence with each other. Finally, an assessment of the current technique with other existing navigational model reveals a performance improvement.Research limitations/implicationsThe proposed hybrid controller provides satisfactory results for navigational analysis of single as well as multiple humanoids. However, the developed hybrid scheme can also be attempted with use of other smart algorithms.Practical implicationsHumanoid navigation is the present talk of the town, as its use is widespread to multiple sectors such as industrial automation, medical assistance, manufacturing sectors and entertainment. It can also be used in space and defence applications.Social implicationsThis approach towards path planning can be very much helpful for navigating multiple forms of humanoids to assist in daily life needs of older adults and can also be a friendly tool for children.Originality/valueHumanoid navigation has always been tricky and challenging. In the current work, a novel hybrid methodology of navigational analysis has been proposed for single and multiple humanoid robots, which is rarely reported in the existing literature. The developed navigational plan is verified through testing in simulation and experimental platforms. The results obtained from both the platforms are assessed against each other in terms of selected navigational parameters with observation of minimal error limits and close agreement. Finally, the proposed hybrid scheme is also evaluated against other existing navigational models, and significant performance improvements have been observed.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1334
Author(s):  
Mohamed R. Torkomany ◽  
Hassan Shokry Hassan ◽  
Amin Shoukry ◽  
Ahmed M. Abdelrazek ◽  
Mohamed Elkholy

The scarcity of water resources nowadays lays stress on researchers to develop strategies aiming at making the best benefit of the currently available resources. One of these strategies is ensuring that reliable and near-optimum designs of water distribution systems (WDSs) are achieved. Designing WDSs is a discrete combinatorial NP-hard optimization problem, and its complexity increases when more objectives are added. Among the many existing evolutionary algorithms, a new hybrid fast-convergent multi-objective particle swarm optimization (MOPSO) algorithm is developed to increase the convergence and diversity rates of the resulted non-dominated solutions in terms of network capital cost and reliability using a minimized computational budget. Several strategies are introduced to the developed algorithm, which are self-adaptive PSO parameters, regeneration-on-collision, adaptive population size, and using hypervolume quality for selecting repository members. A local search method is also coupled to both the original MOPSO algorithm and the newly developed one. Both algorithms are applied to medium and large benchmark problems. The results of the new algorithm coupled with the local search are superior to that of the original algorithm in terms of different performance metrics in the medium-sized network. In contrast, the new algorithm without the local search performed better in the large network.


Sign in / Sign up

Export Citation Format

Share Document