Predictive model of overburden deformation: based on machine learning and distributed optical fiber sensing technology

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wenyuan Liu ◽  
Chunde Piao ◽  
Yazhou Zhou ◽  
Chaoqi Zhao

Purpose The purpose of this paper is to establish a strain prediction model of mining overburden deformation, to predict the strain in the subsequent mining stage. In this way, the mining area can be divided into zones with different degrees of risk, and the prevention measures can be taken for the areas predicted to have large deformation. Design/methodology/approach A similar-material model was built by geological and mining conditions of Zhangzhuang Coal Mine. The evolution characteristics of overburden strain were studied by using the distributed optical fiber sensing (DOFS) technology and the predictive model about overburden deformation was established by applying machine learning. The modeling method of the predictive model based on the similar-material model test was summarized. Finally, this method was applied to engineering. Findings The strain value predicted by the proposed model was compared with the actual measured value and the accuracy is as high as 97%, which proves that it is feasible to combine DOFS technology with machine learning and introduce it into overburden deformation prediction. When this method was applied to engineering, it also showed good performance. Originality/value This paper helps to promote the application of machine learning in the geosciences and mining engineering. It provides a new way to solve similar problems.

Sensor Review ◽  
2021 ◽  
Vol 41 (4) ◽  
pp. 350-360
Author(s):  
Xiao Fang ◽  
Yajie Zeng ◽  
Feng Xiong ◽  
Jiang Chen ◽  
Fei Cheng

Purpose Seepage of the dam is an important safety problem, which may cause internal erosion of the structure. In the field of seepage monitoring in civil engineering, the distributed optical fiber sensing technology based on the temperature tracing method has been paid more attention due to its unique advantages of high sensitivity, good stability and high resolution. The purpose of this paper is to make a review of the existing related research, so as to facilitate the later scholars to understand and further study more systematically. Design/methodology/approach In this paper, three kinds of commonly used distributed fiber temperature measurement technologies are introduced. Based on the working principle, monitoring system, theoretical analysis, experimental research and engineering application of the fiber seepage monitoring technology, the present situation of dam seepage monitoring based on distributed fiber is reviewed in detail and their advantages and disadvantages are compared. Findings The thermal monitoring technology of seepage measurement depends on the accuracy of optical fiber temperature measurement (including the accuracy of the system and the rationality of the discrimination method), the correct installation of optical fiber and the quantitative analysis of temperature data. The accuracy of the current monitoring system can basically meet the existing measurement requirements, but the correct installation of optical fiber and the calibration of temperature data need to be further studied for different discrimination methods, and this field has great research value. Originality/value At present, there are many applications and research studies of optical fiber sensing in the field of structural health monitoring, and there are also reviews of related aspects. However, there is little or no review only in the field of seepage monitoring. This paper summarizes the research and application of optical fiber sensing in the field of seepage monitoring. The possibility of the gradient method to find its new prospect with the development of monitoring systems and the improvement of temperature resolution is discussed. The idea of extending the seepage monitoring method based on distributed optical fiber thermal monitoring technology to other monitoring fields is also given in the paper.


2019 ◽  
Vol 66 (1) ◽  
pp. 299-305 ◽  
Author(s):  
Diego Di Francesca ◽  
Angelo Infantino ◽  
Gaetano Li Vecchi ◽  
Sylvain Girard ◽  
Antonino Alessi ◽  
...  

2021 ◽  
Author(s):  
Jian Li ◽  
Xinxin Zhou ◽  
Yang Xu ◽  
Lijun Qiao ◽  
Jianzhong Zhang ◽  
...  

Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jianxing Jian Gu ◽  
Chen Yu ◽  
ZhenZe Yang ◽  
Peng Xue ◽  
Ning Jing ◽  
...  

Purpose This study aims to optimize the structure of gold-sputtered U-shaped plastic fiber sensors. Design/methodology/approach A group of U-shaped Au-sputtered plastic optical fiber sensing probes with polishing angles of 45°, 90° and 135° is prepared. Findings The experimental results show that the spectral response and sensitivity of the sensor at 45°polishing angle is twice that of the sensor at 90°. Research limitations/implications Due to the limitations of laboratory temperature and equipment, the overall effect has not reached the ideal, but the expected effect has been obvious. Experiments also optimize the sensor. Practical implications Optical fiber sensing has always been an indispensable part of various fields. Social implications Sensor optimization is of great help to the progress of technology and the development of science and technology. Originality/value The authors have no conflicts of interest to disclose.


Sign in / Sign up

Export Citation Format

Share Document