sensing system
Recently Published Documents


TOTAL DOCUMENTS

4664
(FIVE YEARS 1158)

H-INDEX

79
(FIVE YEARS 12)

2022 ◽  
Vol 149 ◽  
pp. 107858
Author(s):  
Lixiao Zhang ◽  
Botao Xie ◽  
Weijie Li ◽  
Guangyi Zhou ◽  
Xuefeng Zhao

2022 ◽  
Vol 22 (2) ◽  
pp. 1-15
Author(s):  
Tu N. Nguyen ◽  
Sherali Zeadally

Conventional data collection methods that use Wireless Sensor Networks (WSNs) suffer from disadvantages such as deployment location limitation, geographical distance, as well as high construction and deployment costs of WSNs. Recently, various efforts have been promoting mobile crowd-sensing (such as a community with people using mobile devices) as a way to collect data based on existing resources. A Mobile Crowd-Sensing System can be considered as a Cyber-Physical System (CPS), because it allows people with mobile devices to collect and supply data to CPSs’ centers. In practical mobile crowd-sensing applications, due to limited budgets for the different expenditure categories in the system, it is necessary to minimize the collection of redundant information to save more resources for the investor. We study the problem of selecting participants in Mobile Crowd-Sensing Systems without redundant information such that the number of users is minimized and the number of records (events) reported by users is maximized, also known as the Participant-Report-Incident Redundant Avoidance (PRIRA) problem. We propose a new approximation algorithm, called the Maximum-Participant-Report Algorithm (MPRA) to solve the PRIRA problem. Through rigorous theoretical analysis and experimentation, we demonstrate that our proposed method performs well within reasonable bounds of computational complexity.


2022 ◽  
Vol 6 (1) ◽  
pp. 1-29
Author(s):  
Anshul Agarwal ◽  
Krithi Ramamritham

Buildings, viewed as cyber-physical systems, become smart by deploying Building Management Systems (BMS). They should be aware about the state and environment of the building. This is achieved by developing a sensing system that senses different interesting factors of the building, called as “facets of sensing.” Depending on the application, different facets need to be sensed at various locations. Existing approaches for sensing these facets consist of deploying sensors at all the places so they can be sensed directly. But installing numerous sensors often aggravate the issues of user inconvenience, cost of installation and maintenance, and generation of e-waste. This article proposes how intelligently using the existing information can help to estimate the facets in cyber-physical systems like buildings, thereby reducing the sensors to be deployed. In this article, an optimization framework has been developed, which optimally deploys sensors in a building such that it satisfies BMS requirements with minimum number of sensors. The proposed solution is applied to real-world scenarios with cyber-physical systems. The results indicate that the proposed optimization framework is able to reduce the number of sensors by 59% and 49% when compared to the baseline and heuristic approach, respectively.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 674
Author(s):  
Francesco Rundo ◽  
Ilaria Anfuso ◽  
Maria Grazia Amore ◽  
Alessandro Ortis ◽  
Angelo Messina ◽  
...  

From a biological point of view, alcohol human attentional impairment occurs before reaching a Blood Alcohol Content (BAC index) of 0.08% (0.05% under the Italian legislation), thus generating a significant impact on driving safety if the drinker subject is driving a car. Car drivers must keep a safe driving dynamic, having an unaltered physiological status while processing the surrounding information coming from the driving scenario (e.g., traffic signs, other vehicles and pedestrians). Specifically, the identification and tracking of pedestrians in the driving scene is a widely investigated problem in the scientific community. The authors propose a full, deep pipeline for the identification, monitoring and tracking of the salient pedestrians, combined with an intelligent electronic alcohol sensing system to properly assess the physiological status of the driver. More in detail, the authors propose an intelligent sensing system that makes a common air quality sensor selective to alcohol. A downstream Deep 1D Temporal Residual Convolutional Neural Network architecture will be able to learn specific embedded alcohol-dynamic features in the collected sensing data coming from the GHT25S air-quality sensor of STMicroelectronics. A parallel deep attention-augmented architecture identifies and tracks the salient pedestrians in the driving scenario. A risk assessment system evaluates the sobriety of the driver in case of the presence of salient pedestrians in the driving scene. The collected preliminary results confirmed the effectiveness of the proposed approach.


Author(s):  
Nicole Hugouvieux‐Cotte‐Pattat ◽  
Monique Royer ◽  
Erwan Gueguen ◽  
Paul Le Guen ◽  
Roderich D. Süssmuth ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Mengwei Liu ◽  
Yujia Zhang ◽  
Jiachuang Wang ◽  
Nan Qin ◽  
Heng Yang ◽  
...  

AbstractObject recognition is among the basic survival skills of human beings and other animals. To date, artificial intelligence (AI) assisted high-performance object recognition is primarily visual-based, empowered by the rapid development of sensing and computational capabilities. Here, we report a tactile-olfactory sensing array, which was inspired by the natural sense-fusion system of star-nose mole, and can permit real-time acquisition of the local topography, stiffness, and odor of a variety of objects without visual input. The tactile-olfactory information is processed by a bioinspired olfactory-tactile associated machine-learning algorithm, essentially mimicking the biological fusion procedures in the neural system of the star-nose mole. Aiming to achieve human identification during rescue missions in challenging environments such as dark or buried scenarios, our tactile-olfactory intelligent sensing system could classify 11 typical objects with an accuracy of 96.9% in a simulated rescue scenario at a fire department test site. The tactile-olfactory bionic sensing system required no visual input and showed superior tolerance to environmental interference, highlighting its great potential for robust object recognition in difficult environments where other methods fall short.


2022 ◽  
Author(s):  
Hanwen Zhang ◽  
Zhen Qin ◽  
Yichao Zhang ◽  
Dajiang Chen ◽  
Ji Gen ◽  
...  

Abstract The Gaussian noise model has been chosen for underwater information sensing tasks under substantial interference for most of the research at present. However, it often contains a strong impact and does not conform to the Gaussian distribution. In this paper, a practical underwater information sensing system is proposed based on intermittent chaos under the background of Lévy noise. In this system, a novel Lévy noise model is presented to describe the underwater natural environment interference and estimate its parameters, which can better describe the impact characteristics of the underwater environment. Then an underwater environment sensing method of dual-coupled intermittent chaotic Duffing oscillator is improved by using the variable step-size method and scale transformation. The simulation results show that the method can sense weak signals and estimate their frequencies under the background of strong Lévy noise, and the estimation error is as low as 0.03%. Compared with the intermittent chaos of the single Duffing oscillator and the intermittent chaotic Duffing of double coupling, the minimum SNR ratio threshold has been reduced by 11.5dB and 6.9dB, respectively, and the computational cost significantly reduced, and the sensing efficiency is significantly improved.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Bo Wang ◽  
Chuanzhen Zhao ◽  
Zhaoqing Wang ◽  
Kyung-Ae Yang ◽  
Xuanbing Cheng ◽  
...  

Author(s):  
Mingfang Wang ◽  
Xia Li ◽  
Shihao Song ◽  
Chaoyu Cui ◽  
Lian-Hui Zhang ◽  
...  

It has been demonstrated that quorum sensing (QS) is widely employed by bacterial cells to coordinately regulate various group behaviors. Diffusible signal factor (DSF)-type signals have emerged as a growing family of conserved cell-cell communication signals. In addition to the DSF signal initially identified in Xanthomonas campestris pv. campestris, B urkholderia d iffusible s ignal f actor (BDSF, cis -2-dodecenoic acid) has been recognized as a conserved DSF-type signal with specific characteristics in both signal perception and transduction from DSF signals. Here, we review the history and current progress of the research of this type of signal, especially focusing on its biosynthesis, signaling pathways, and biological functions. We also discuss and explore the huge potential of targeting this kind of QS system as a new therapeutic strategy to control bacterial infections and diseases.


Sign in / Sign up

Export Citation Format

Share Document