Different tube bundles effect on the shell-and-tube heat exchanger performance

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ali Akbar Abbasian Arani ◽  
Hamed Uosofvand

Purpose This paper aims to present a numerical investigation on laboratory-scale segmental baffles shell-and-tube heat exchanger (STHX) having various tube bundles and baffle configuration. Design/methodology/approach To discover the higher performance the thermohydraulic behavior of shell-side fluid flow with circular, elliptical and twisted oval tube bundles with segmental and inclined segmental baffled is compared. Shell side turbulent flow and heat transfer are simulated by a finite volume discretization approach using SolidWorks Flow Simulation. To achieve greater configuration performance of this device, the following two approaches is considered: using the inclined baffle with 200 angles of inclination and applying the different tube bundle. Findings Different parameters as heat transfer rate, pressure drop (Δp), heat transfer coefficient (h) and heat transfer coefficient to pressure drop ratio (h/Δp) are presented and discussed. Besides, for considering the effect of pressure penalty and heat transfer improvement instantaneously, the efficiency evaluation coefficient (EEC) in the fluid flow and heat transfer based on the power required to provide the real heat transfer augmentation are used. Originality/value Obtained results displayed that, at the equal mass flow rate, the twisted oval tubes with segmental baffle decrease the pressure drop 53.6% and 35.64% rather than that the circular and elliptical tubes bundle, respectively. By comparing the (h/Δp) ratio, it can result that the STHX with twisted oval tubes bundle (both segmental and inclined baffle) has better performance than other kinds of the tube bundles. Present results showed that the values of the EEC for all provided models are higher than 1, except for elliptical tube bundles with segmental baffles. The STHX with twisted oval tube bundles and segmental baffle gives the highest EEC value equal to 1.16 in the range of investigated mass flow.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


Author(s):  
Guidong Chen ◽  
Jing Xu ◽  
Ming Zen ◽  
Qiuwang Wang

In order to improve heat transfer performance of conventional segmental baffled shell-and-tube heat exchangers (STHXs), the shell-and-tube heat exchanger with combined helical baffles (CMH-STHX) were invented. In the present study, the CMH-STHX is compared with three other STHXs which were set up with continuous helical baffles (CH-STHX), discontinuous helical baffles (DCH-STHX) and segmental baffles (SG-STHX), by Computational Fluid Dynamics method. The numerical results show that, for the same mass flow rate at the shell side, the overall pressure drop of the CMH-STHX is about 50% and 40% lower than that of SG-STHX and CH-STHX. The heat transfer coefficient of the CMH-STHX is between those of CH-STHX and DCH-STHX and it is 6.3% lower than that of SG-STHX. The heat transfer coefficient under unit pressure drop h/Δp is introduced to evaluate the comprehensive performance of STHXs. The h/Δp of the CMH-STHX is 7.5%, 6.5% and 87.4% higher on average than those of the CH-SHTX, DCH-STHX and SG-STHX. Furthermore, the total heat transfer rate of CMH-STHX is about 25% higher than that of SG-STHX for the same total pressure drop of shell side. Supported by these results, the new heat exchanger (CMH-STHX) may be used to replace the conventional shell-and-tube heat exchanger in industrial applications.


2011 ◽  
Vol 312-315 ◽  
pp. 187-192
Author(s):  
Rita Aguilar Osorio ◽  
K. Cliffle

The aim of this work is to present an experimental research of the shell side heat transfer coefficient and pressure drop in a plastic shell and tube heat exchanger with single segmental baffle. The tube bundle consisted of 110 U-tubes constructed of high-density polyethylene, the inside diameter was 9.2 mm, the tube pitch was 1.5 the out side diameter. The shell was constructed of polypropylene with a diameter of 315 mm. Shell side heat transfer coefficients and pressure drop were determined varying the flow rates. An experimental rig for the experimental research was designed and constructed. The overall experimental rig consisted of two operation cycles. The two fluids used in this system were hot and cold water. The experimental results were compared with theoretical predictions using the Bell-Taborek and Wills and Johnston Methods. The heat transfer coefficient predictions, for Reynolds number greater than 780, showed that the Bell-Taborek and Wills-Johnston methods are in general agreement with the experimental data with only 5% difference, Wills-Johnston overpredicts it and Bell underpredicts it, except at the lower Reynolds number than 780 where there was an average underprediction of 15%. The pressure drop predictions by Wills-Johnston and Bell-Taborek methods were generally acceptable including the inlet and outlet nozzles with the highest experimental data (Reynolds number greater than 780) within a 15% overprediction, however, at the lower data the pressure drop was overpredicted up to 2 times the measured values.


2019 ◽  
Vol 29 (6) ◽  
pp. 2103-2127 ◽  
Author(s):  
Ahmed Youcef ◽  
Rachid Saim ◽  
Hakan F. Öztop ◽  
Mohamed Ali

Purpose This work presents a numerical study of the dynamic and thermal behavior of a turbulent flow in a shell and tube heat exchanger equipped with a new design of baffle type wing. The implementation of this type of baffle makes it possible to lengthen the path of the fluid in the shell, to increase the heat flux exchanged on the one hand and is to capture the weakness of the shell and tube heat exchanger with segmental baffles on the other hand. Design/methodology/approach This paper aims to analyze numerically the thermo-convective behavior of water using CFD technique by solving the conservation equations of mass, momentum and energy by the finite volume method based on the SIMPLE algorithm for coupling velocity-pressure. To describe the turbulence phenomenon, the Realizable k–ε model is employed. The analysis is done for different mass flow rates. The parameters studied are: the fluid outlet temperature, the average heat transfer coefficient, the pressure drop, the total heat transfer rate, the effect of the geometric shape of the baffle on the thermal behavior. The purpose of this study is to propose a new design of a shell and tube heat exchanger with a high heat transfer coefficient and a lower pressure drop compared to a shell and tube heat exchanger with transverse and segmental baffles. Findings The results showed that the use of the wing baffles enhanced the heat transfer coefficient significantly and reduced the friction coefficient. Compared with segmental baffles, the wing baffles are 11.67, 18.53 and 11.5 per cent lower in the pressure drop and 1.79, 1.9 and 2.39 per cent higher in the Nusselt number for the three mass flow rates 0.5, 1 and 2 kg/s, respectively. Originality/value The originality of this work lies in proposing a three-dimensional analysis for a novel heat exchanger.


2019 ◽  
Vol 30 (8) ◽  
pp. 4119-4140 ◽  
Author(s):  
Ali Akbar Abbasian Arani ◽  
Hamed Uosofvand

Purpose This paper aims to investigate the fluid flow and heat transfer of a laboratory shell and tube heat exchanger that are analyzed using computational fluid dynamic approach by SOLIDWORKS flow simulation (ver. 2015) software. Design/methodology/approach In this study, several types of baffle including segmental baffle, butterfly baffle, helical baffle, combined helical-segmental baffle, combined helical-disk baffle and combined helical-butterfly baffle are examined. Two important parameters as the heat transfer and pressure drop are evaluated and analyzed. Based on obtained results, segmental baffle has the highest amount of heat transfer and pressure drop. To assess the integrative performance, performance coefficient defines as “Q/Δp” is used. Findings This investigation showed that among the presented baffle types, the heat exchangers equipped with disk baffle has the highest heat transfer. In addition, in the same mass flow rate, the performance coefficient of the shell and tube heat exchanger equipped with helical-butterfly baffle is the highest among the proposed models. Originality/value After combined helical-butterfly baffle the butterfly baffle, disk baffle, helical-segmental baffle and helical-disk baffle show their superiority of 35.12, 25, 22 and 12 per cent rather than the common segmental baffle, respectively. Furthermore, except for the combined helical-disk baffle, the other type of combined baffle have better performance compare to the basic configuration (butterfly and segmental baffle).


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4138 ◽  
Author(s):  
Yue Sun ◽  
Xinting Wang ◽  
Rui Long ◽  
Fang Yuan ◽  
Kun Yang

In this work, a shell and tube heat exchanger with inclined trefoil-hole baffles (STHX-IT) is proposed, and the numerical simulation is conducted to investigate the flow and heat transfer characteristics. A shell and tube heat exchanger with segmental baffles (STHX-SG) is also studied for the performance comparison. The results show that the heat transfer coefficient and pressure drop of the STHX-IT is averagely lower by 23.89% and 44.19% than those of the STHX-SG, but the heat transfer coefficient per pressure drop is higher by 36.38% on average. Further, the parametric studies of the inclination angle θ, trefoil-hole number n, and baffle cut δ are carried out for the STHX-IT. According to the numerical results, n and δ have more notable influence on shell side performance than θ. In detail, the heat transfer coefficient and pressure drop decrease slightly with θ increasing, and the overall performance is approximately equal; both the heat transfer coefficient and pressure drop decrease with the respective rising of n and δ, but the comprehensive performance shows a growing trend. Considering the synthetic effects of structural parameters, the multi-objective structure optimization using the genetic algorithm combined with the artificial neural networks is fulfilled. As a result, the Pareto front is obtained to characterize the behaviors of the maximum heat transfer rate and minimum pressure drop. The STHX-IT with the θ = 5.38°, n = 6, and δ = 43% is decided as the optimal solution by the TOPSIS method, whose Q/Δp is 2.34 times as much as that of the original STHX-SG.


Author(s):  
S. V. Sridhar ◽  
R. Karuppasamy ◽  
G. D. Sivakumar

Abstract In this investigation, the performance of the shell and tube heat exchanger operated with tin nanoparticles-water (SnO2-W) and silver nanoparticles-water (Ag-W) nanofluids was experimentally analyzed. SnO2-W and Ag-W nanofluids were prepared without any surface medication of nanoparticles. The effects of volume concentrations of nanoparticles on thermal conductivity, viscosity, heat transfer coefficient, fiction factor, Nusselt number, and pressure drop were analyzed. The results showed that thermal conductivity of nanofluids increased by 29% and 39% while adding 0.1 wt% of SnO2 and Ag nanoparticles, respectively, due to the unique intrinsic property of the nanoparticles. Further, the convective heat transfer coefficient was enhanced because of improvement of thermal conductivity of the two phase mixture and friction factor increased due to the increases of viscosity and density of nanofluids. Moreover, Ag nanofluid showed superior pressure drop compared to SnO2 nanofluid owing to the improvement of thermophysical properties of nanofluid.


Author(s):  
Fadi A. Ghaith ◽  
Ahmed S. Izhar

This paper aims to enhance the thermal performance of an industrial shell-and-tube heat exchanger utilized for the purpose of cooling raw natural gas by means of mixture of Sales gas. The main objective of this work is to provide an optimum and reliable thermal design of a single-shelled finned tubes heat exchanger to replace the existing two- shell and tube heat exchanger due to the space limitations in the plant. A comprehensive thermal model was developed using the effectiveness-NTU method. The shell-side and tube-side overall heat transfer coefficient were determined using Bell-Delaware method and Dittus-Boelter correlation, respectively. The obtained results showed that the required area to provide a thermal duty of 1.4 MW is about 1132 m2 with tube-side and shell-side heat transfer coefficients of 950 W/m2K and 495 W/m2K, respectively. In order to verify the obtained results generated from the mathematical model, a numerical study was carried out using HTRI software which showed a good match in terms of the heat transfer area and the tube-side heat transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document