Lattice Boltzmann simulation of convective flow and heat transfer in a nanofluid-filled hollow cavity

2019 ◽  
Vol 29 (9) ◽  
pp. 3075-3094
Author(s):  
Qiang Pu ◽  
Farhad Aalizadeh ◽  
Darya Aghamolaei ◽  
Mojtaba Masoumnezhad ◽  
Alireza Rahimi ◽  
...  

Purpose This paper aims to to simulate the flow and heat transfer during free convection in a square cavity using double-multi-relaxation time (MRT) lattice Boltzmann method. Design/methodology/approach The double-MRT lattice Boltzmann method is used, and the natural convection fluid flow and heat transfer under influence of different parameters are analyzed. The D2Q5 model and D2Q9 model are used for simulation of temperature field and flow field, respectively. The cavity is filled with CuO-water nanofluid; in addition, the thermo-physical properties of nanofluid and the effect of nanoparticles’ shapes are considered using Koo–Kleinstreuer–Li (KKL) model. On the other hand, the cavity is included with an internal active hollow with constant thermal boundary conditions at its walls and variable dimensions. It should be noted that the dimensions of the internal hollow will be determined by as aspect ratio. Findings The Rayleigh number, nanoparticle concentration and the aspect ratio are the governing parameters. The heat transfer performance of the cavity has direct relationship with the Rayleigh number and solid volume fraction of CuO-water nanofluid. Moreover, the configuration of the cavity is good controlling factor for changing the heat transfer performance and entropy generation. Originality/value The originality of this work is using double-MRT lattice Boltzmann method in simulating the free convection fluid flow and heat transfer.

Author(s):  
Alireza Rahimi ◽  
Hesam Bakhshi ◽  
Ali Dehghan Saee ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah

Purpose The study aims to study the nanofluid flow and heat transfer in a T-shaped heat exchanger. For the numerical simulations, the lattice Boltzmann method is used. Design/methodology/approach The end of each branch of the heat exchanger is considered a curve wall that requires special thermal and physical boundary conditions. To improve the thermal performance of the heat exchanger, the CuO–water nanofluid, which has better heat transfer performance with respect to pure water, is used. The dynamic viscosity of nanofluid is estimated by means of KKL model. Several active fins and solid bodies are implanted within the heat exchanger with different thermal arrangements. Findings In the present work, different approaches such as heatline visualization, local and total entropy generation analysis, local and total Nusselt variation are used to detect the impact of different considered parameters such as Rayleigh number (103 < Ra < 106), solid volume fraction of nanofluid (φ = 0,0.01,0.02,0.03 and 0.04 vol. per cent) and thermal arrangements of internal bodies (Case A, Case B, Case C and Case D) on the fluid flow and heat transfer performance. Originality/value The originality of this work is to analyze the two-dimensional natural convection and entropy generation using lattice Boltzmann method.


2019 ◽  
Vol 29 (9) ◽  
pp. 3056-3074 ◽  
Author(s):  
HamidReza KhakRah ◽  
Mehdi Mohammaei ◽  
Payam Hooshmand ◽  
Navid Bagheri ◽  
Emad Hasani Malekshah

PurposeThe nanofluid flow and heat transfer within a heat exchanger, with different thermal arrangements of internal active bodies, are investigated.Design/methodology/approachFor the numerical simulations, the lattice Boltzmann method is utilized. The KKL model is used to predict the dynamic viscosity of CuO-water nanofluid. Furthermore, the Brownian method is taken account using this model. The influence of shapes of nanoparticles on the heat transfer performance is considered.FindingsThe results show that the platelet nanoparticles render higher average Nusselt number showing better heat transfer performance. In order to perform comprehensive analysis, the heatline visualization, local and total entropy generation, local and average Nusselt variation are employed.Originality/valueThe originality of this work is carrying out a comprehensive investigation of nanofluid flow and heat transfer during natural convection using lattice Boltzmann method and employing second law analysis and heatline visualization.


Author(s):  
HamidReza KhakRah ◽  
Payam Hooshmand ◽  
David Ross ◽  
Meysam Jamshidian

Purpose The purpose of this paper is to investigate the compact finite-difference lattice Boltzmann method is used to simulate the free convection within a cavity. Design/methodology/approach The finite-difference discretization method enables the numerical simulations to be run when there are non-uniform and curvilinear grids with a finer near-wall grid resolution. Furthermore, the high-order method is applied in the numerical approach, which makes it possible to go with relatively coarse mesh in respect to simulations, which used classical lattice Boltzmann method. The configuration of the cavity is set to sine-walled square. In addition, the cavity is filled with Al2O3-water nanofluid, and the Koo–Kleinstreuer–Li model is used to estimate the properties of nanofluid. Findings The nanoparticle (Al2O3) concentration in the base fluid (water) is considered in a range of 0-0.04. The nanofluid flow and heat transfer are investigated in laminar regime with Rayleigh number in the range of 103-106. The second law analysis is used to study the effects of different governing parameters on the local and volumetric entropy generation. The Rayleigh number, configuration of the cavity and nanoparticle concentration are considered as the governing parameters. The results are mainly focused on the flow structure, temperature field, local and volumetric entropy generation and heat transfer performance. Originality/value The originality of this study is using of a modern numerical method supported by an accurate prediction for nanofluid properties to simulate the flow and heat transfer during natural convection in a cavity.


2019 ◽  
Vol 29 (10) ◽  
pp. 3659-3684 ◽  
Author(s):  
Rasul Mohebbi ◽  
Mohsen Izadi ◽  
Nor Azwadi Che Sidik ◽  
Gholamhassan Najafi

Purpose This paper aims to study the natural convection of a nanofluid inside a cavity which contains obstacles using lattice Boltzmann method (LBM). The results have focused mainly on various parameters such as number and aspect ratio of roughness elements and different nanoparticle volume fraction. The isotherms and streamlines are presented to describe the hydrodynamics and thermal behaviors of the nanofluid flow throughout the enclosure. Design/methodology/approach The methodology of this paper consists of mathematical model, statement of the problem, nanofluid thermophysical properties, lattice Boltzmann method, LBM for fluid flow, LBM for heat transfer, numerical strategy, boundary conditions, Nusselt (Nu) number calculation, code validation and grid independence. Findings Natural convection heat transfers of a nanofluid inside cavities with and without rough elements have been studied. Lattice Boltzmann technique has been used as numerical approach. The results showed that at higher Rayleigh number (Ra = 106), there are denser streamlines near the left (source) and right wall (sink) which results in better cooling and enhances convective heat rejection to the heat sink. After a distinctive aspect ratio of rough elements (A = 0.1), change in streamline pattern which arises from increasing of aspect ratio does not have an important effect on isotherms. Results indicate that for lower Rayleigh number (Ra = 103), no variation in average Nu is observed with increasing in number of roughness, while for higher one (Ra = 106) average Nu decreases from N = 0 (smooth cavity) up to N = 4 and then remains constant (N = 6). Originality/value Currently, no argumentative and comprehensive extraction can be concluded without fully understanding the role of different arrangement of roughness. Some geometrical parameters such as aspect ratio, number and position of rough elements have been considered. Also, the effect of nanoparticle concentration was studied at different Ra number. Briefly, using LBM, this paper aims to investigate the natural convection of a nanofluid flow on the thermal and hydrodynamics parameters in the presence of rough element with various arrangements.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shayan Naseri Nia ◽  
Faranak Rabiei ◽  
M. M. Rashidi

Purpose This paper aims to use the Lattice Boltzmann method (LBM) to numerically simulate the natural convection heat transfer of Cu-water nanofluid in an L-shaped enclosure with curved boundaries. Design/methodology/approach LBM on three different models of curved L-shape cavity using staircase approach is applied to perform a comparative investigation for the effects of curved boundary on fluid flow and heat transfer. The staircase approximation is a straightforward and efficient approach to simulating curved boundaries in LBM. Findings The effect of curved boundary on natural convection in different parameter ranges of Rayleigh number and nanoparticle volume fraction is investigated. The curved L-shape results are also compared to the rectangular L-shape results that were also achieved in this study. The curved boundary LBM simulation is also validated with existing studies, which shows great accuracy in this study. The results show that the top curved boundary in curved L-shape models causes a notable increase in the Nusselt number values. Originality/value Based on existing literature, there is a lack of comparative studies which would specifically examine the effects of curved boundaries on natural convection in closed cavities. Particularly, the application of curved boundaries to an L-shape cavity has not been examined. In this study, curved boundaries are applied to the sharp corners of the bending section in the L-shape and the results of the curved L-shape models are compared to the simple rectangular L-shape model. Hence, a comparative evaluation is performed for the effect of curved boundaries on fluid flow in the L-shape enclosure.


Author(s):  
Ying Zhang ◽  
Xuhui Huang ◽  
Yichen Huang ◽  
Meng Xu ◽  
Jie Lei

Based on the non-orthogonal multiple-relaxation time lattice Boltzmann method (MRT-LBM), natural convection in a porous square cavity with a pair of isothermally hot and cold blocks inside has been studied numerically in the current study. The influence of arrangements (Case1, Case2, Case3, Case4, Case5), spacing ratio (S) and size ratio (A) of the hot and cold sources and the Rayleigh number (Ra) on the heat exchange efficiency has been studied. The results show that different arrangements produce different heat transfer effects. Hot and cold blocks placed horizontally (Case1) and hot block located in the upper left corner while cold block located in the bottom right corner (Case4) have better heat exchange performances than other three cases since the flow directions of hot and cold fluids are closer to that of heat transfer. Then the influence of spacing between blocks and size of blocks on heat transfer rate is further studied in Case1 and Case4. The heat transfer performance is improved with A increasing. Additionally, the variation of heat transfer performance with spacing is related to the arrangement and size ratio of blocks. For Ra=104, 105 and 106, the best heat transfer characteristic can be obtained in Case1 when S=0.05 and A=0.20. For Ra=107, Case4 exhibits the best heat transfer effect when S=0.35 and A=0.20.


Sign in / Sign up

Export Citation Format

Share Document